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While building and deploying VIL models
is now an increasingly common practice,
interpreting models is not.
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A Design Probe to Understand How Data

Scientists Understand Machine Learning Models.
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ABSTRACT

Without good models and the right tools to interpret them,
data scientists risk making decisions based on hidden biases,
spurious correlations, and false generalizations. This has led
to a rallying cry for model interpretability. Yet the concept
of interpretability remains nebulous, such that researchers
and tool designers lack actionable guidelines for how to in-
corporate interpretability into models and accompanying
tools. Through an iterative design process with expert ma-
chine learning researchers and practitioners, we designed a
visual analytics system, GAMUT, to explore how interactive
interfaces could better support model interpretation. Using
GAMUT as a probe, we investigated why and how profes-
sional data scientists interpret models, and how interface af-
fordances can support data scientists in answering questions
about model interpretability. Our investigation showed that
interpretability is not a monolithic concept: data scientists
have different reasons to interpret models and tailor expla-
nations for specific audiences, often balancing competing
concerns of simplicity and completeness. Participants also
asked to use GAMUT in their work, highlighting its potential
to help data scientists understand their own data.
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1 INTRODUCTION

With recent advances in machine learning (ML) [29, 37, 58,
65], people are beginning to use ML to address important
societal problems like identifying and predicting cancerous
cells [14, 32], predicting poverty from satellite imagery to
inform policy decisions [27], and locating buildings that are
susceptible to catching on fire [43, 59]. Unfortunately, the
metrics by which models are trained and evaluated often
hide biases, spurious correlations, and false generalizations
inside complex, internal structure. These pitfalls are nuanced,
particularly to novices, and cannot be diagnosed with sim-
ple quality metrics, like a single accuracy number [66]. This
is troublesome when ML is misused, with intent or igno-
rance, in situations where ethics and fairness are paramount.
Lacking an explanation for how models perform can lead
to biased and ill-informed decisions, like representing gen-
der bias in facial analysis systems [7], propagating historical
cultural stereotypes in text corpora into widely used Al com-
ponents [8], and biasing recidivism predictions by race [3].
This is the problem of model interpretability.
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Visualization W ® Verbalization
Explanations Explanations
Show model context Direct and concise
Interactive analytics Less cognitive load

Rely on user interpretation No training needed
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Automatically generate natural language statements,
or verbalizations, to complement explanatory
visualizations for machine learning models.
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