TELEGAM

Combining Visualization and Verbalization for Interpretable Machine Learning

VIS 2019 Vancouver, Canada

Fred Hohman

@fredhohman Georgia Tech

Arjun Srinivasan Georgia Tech

Microsoft® Research

Q	ai is	
Q	ai is dangerous	5
Q	ai is the new el	ectricity
Q	ai is taking ove	r
Q	ai is a crapsho	ot
Q	ai is overhypec	1
Q	ai is just if stat e	ements
Q	ai is bad	
Q	ai is the future	
Q	ai is everywher	е
Q	ai is scary	
		Google S

ļ

Search I'm Feeling Lucky

Report inappropriate predictions

is now an increasingly common practice, interpreting models is not.

While building and deploying ML models

GANUT

Operationalize Interpretability in design probe

GAMs

Use generalized additive models

Investigation

Of emerging practice of interpretability w/ industry practitioners

≡ Gai	mut	
 No	ormalize axes	D Hid
GrLivAre	a () , 1,000 2,000	3,000 4,0
100,000 50,000 -50,000 -50,000 VearRem 100,000 -50,000 -50,000 -50,000	ntSF (i) 11.	2,000 2,500
Showing	1119 of 1119	CLEAR F
ID	Actual	Predicte
833	192000	188383
614	225000	233559
639	139500	142990
721	201000	231785.
616	143500	122110.8
201	175500	176693.
1111	287090	252843
361	250000	256624
1039	189000	207882
501	155000	163536

GAMUT: A Design Probe to Understand How Data Scientists Understand Machine Learning Models. Fred Hohman, Andrew Head, Rich Caruana, Robert DeLine, Steven Drucker. CHI, 2019.

GAMUT: A Design Probe to Understand How

Fred Hohman	Andrew	Head	Rich
Georgia Institute of Technology	UC Ber	keley	Microso
Atlanta, GA, USA	Berkeley,	CA, USA	Redmon
fredhohman@gatech.edu	andrewhead@	berkeley.edu	rcaruana@
Ro	bert DeLine	Steven M.	Drucker
Micr	osoft Research	Microsoft	Research
Redmond, WA, USA		Redmond, WA, USA	
rob.delir	e@microsoft.com	sdrucker@m	icrosoft.com
STRACT		CCS CONCEPTS	6

ACM Reference For

INTRODUCTION

porate interpretability into models and accompanying ools. Through an iterative design process with expert ma chine learning researchers and practitioners, we designed a isual analytics system, GAMUT, to explore how interactive terfaces could better support model interpretation. Using GAMUT as a probe, we investigated why and how profes ional data scientists interpret models, and how interface aflances can support data scientists in answering questions about model interpretability. Our investigation showed that terpretability is not a monolithic concept: data scientists e different reasons to interpret models and tailor explanations for specific audiences, often balancing competing oncerns of simplicity and completeness. Participants also asked to use GAMUT in their work, highlighting its potential to help data scientists understand their own data.

ermission to make digital or hard copies of all or part of this work for remission to make ugua of nate copies of an or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights or components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. CHI 2019 May 4-9, 2019, Glasgow Scotland UK © 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM. ACM ISBN 978-1-4503-5970-2/19/05...\$15.00 https://doi.org/10.1145/3290605.3300809

4

Caruana oft Research ond, WA, USA @microsoft.con

lytics, data visualization, interactive interfaces

Fred Hohman, Andrew Head, Rich Caruana, Robert DeLine, and Steven M. Drucker. 2019. GAMUT: A Design Probe to Understand How Data Scientists Understand Machine Learning Models. In CHI Conference on Human Factors in Computing Systems Proceedings (CHI 2019) May 4–9, 2019, Glasgow, Scotland UK. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3290605.330080

With recent advances in machine learning (ML) [29, 37, 58 65], people are beginning to use ML to address important societal problems like identifying and predicting cancerous cells [14, 32], predicting poverty from satellite imagery to inform policy decisions [27], and locating buildings that are susceptible to catching on fire [43, 59]. Unfortunately, the etrics by which models are trained and evaluated ofter hide biases, spurious correlations, and false generalizations inside complex, internal structure. These pitfalls are nuanced particularly to novices, and cannot be diagnosed with sim ple quality metrics, like a single accuracy number [66]. This is troublesome when ML is misused, with intent or igno rance. in situations where ethics and fairness are paramou Lacking an explanation for how models perform can lead to biased and ill-informed decisions, like representing gen der bias in facial analysis systems [7], propagating historical cultural stereotypes in text corpora into widely used AI com ponents [8], and biasing recidivism predictions by race [3]. This is the problem of *model interpretability*.

Visualization Explanations

Show model context

Interactive analytics

Rely on user interpretation

Visualization Explanations

Show model context

Interactive analytics

Rely on user interpretation

Direct and concise

Less cognitive load

No training needed

ELEGAN

Automatically generate natural language statements, or verbalizations, to complement explanatory visualizations for machine learning models.

Visualization – Verbalization Explanations

Explanations

Dataset + model: AMES-Housing \$	
Resolution: Brief	Detailed
Sort by magnitude: 🔽	
Model Feature Summary	
Instance Feature Summary Settings	
Instance Comparison Summary Settings	

Base Instance Summary

Some features have a notable impact on the prediction.

Comparison Summary

Compared Instance Summary

Dataset + model: AMES-Housing \$	
Resolution: Brief	Detailed
Sort by magnitude: 🔽	
Model Feature Summary	
Instance Feature Summary Settings	
Instance Comparison Summary Settings	

Base Instance Summary

Some features have a notable impact on the prediction.

Comparison Summary

Compared Instance Summary

Dataset + model: AMES-Housing \$
Resolution: Brief
Sort by magnitude: 🗸
Model Feature Summary
Instance Feature Summary Settings
Instance Comparison Summary Settings

Base Instance Summary

Some features have a notable impact on the

Comparison Summary

Compared Instance Summary

	Base instance: 7 Instance 7, Actual: 129900, Prediction: 126024.98
e prediction.	300,000 - 280,000 - 260,000 - 220,000 - 200,000 - 180,000 - 160,000 - 140,000 - 120,000 - 100,000 -

Visualize each feature's global impact on model, grouped by **verbalization**

Dataset + model: AMES-Housing \$	
Resolution: Brief	Detailed
Sort by magnitude: 🔽	
Model Feature Summary	
Instance Feature Summary Settings	
Instance Comparison Summary Settings	

Base Instance Summary

Some features have a notable impact on the prediction.

Comparison Summary

Compared Instance Summary

Dataset + model: AMES-Housing \$
Resolution: Brief
Sort by magnitude: 🔽
Model Feature Summary
Instance Feature Summary Settings
Instance Comparison Summary Settings

Base Instance Summary

Some features have a notable impact on the prediction.

Comparison Summary

Compared Inst

Interactively highlight verbalization in context of the visualization

Dataset + model: AMES-Housing \$	
Resolution: Brief	Detailed
Sort by magnitude: 🔽	
Model Feature Summary	
Instance Feature Summary Settings	
Instance Comparison Summary Settings	

Base Instance Summary

Some features have a notable impact on the prediction.

Comparison Summary

Compared Instance Summary

TELEGAM

Dataset + model: AMES-Housing \$	
Resolution: Brief	Detailed
Sort by magnitude: 🔽	
Model Feature Summary	
Instance Feature Summary Settings	
Instance Comparison Summary Settings	

Base Instance Summary

Some features have a notable impact on the prediction.

Comparison Summary

Compared Inst

Adjust verbalization explanation resolution

Dataset + model: AMES-Housing \$	
Resolution: Brief	Detailed
Sort by magnitude: 🔽	
Model Feature Summary	
Instance Feature Summary Settings	
Instance Comparison Summary Settings	

Base Instance Summary

Some features have a notable impact on the prediction.

Comparison Summary

Compared Instance Summary

TELEGAM

Dataset + model: AMES-Housing \$	Base Instance Summary
Resolution: Brief	Some features have a notable impact on th
Sort by magnitude: 🗹	
Model Feature Summary	
Instance Feature Summary Settings	
Instance Comparison Summary Settings	Comparison Summary

Comparative **verbalization** of two prediction visualizations

Dataset + model: AMES-Housing \$	
Resolution: Brief	Detailed
Sort by magnitude: 🔽	
Model Feature Summary	
Instance Feature Summary Settings	
Instance Comparison Summary Settings	

Base Instance Summary

Some features have a notable impact on the prediction.

Comparison Summary

Compared Instance Summary

Predictions vary potentially due to **some features** contributing differently from both instances.

Predictions vary potentially due to **some features** contributing differently from both instances. Predictions vary potentially due to **9 features** contributing differently from both instances.

Predictions vary potentially due to some features contributing differently from both instances.

Predictions vary potentially due to **9 features** contributing differently from both instances.

Predictions **126,024** and **312,129** vary potentially due to **9 features** (*i.e.*, 25%) contributing differently from both instances.

Predictions vary potentially due to some features contributing differently from both instances.

Predictions vary potentially due to **9 features** contributing differently from both instances.

Predictions **126,024** and **312,129** vary potentially due to **9 features** (*i.e.*, 25%) contributing differently from both instances.

Detailed

Verbalization Types TELEGAM

Model features

Instance features

Instance comparison

Future Work

Dataset context

Uncertainty

Takeaways

Takeaways

Visualization + verbalization are complementary

Combining explanation mediums for the best of both worlds

13

Takeaways

Visualization + verbalizationUse interaction forare complementarygeneration & presentation

Combining explanation mediums for the Let users decide resolution, balancing best of both worlds *simplicity* and *completeness*

TELEGAM

Combining Visualization and Verbalization for Interpretable Machine Learning

bit.ly/telegam-vis

TELEGAM

Dataset + model:	AMES-Housing

Β

Sort by magnitude: 🗸

Resolution: Brief

Model Feature Summary

Non-linear

For 6 features, the final prediction is not proportional to a change in any feature value.

Linear-positive

For 9 features, the final prediction increases when any feature value increases.

Linear-negative

For 2 features, the final prediction decreases when any feature value

Base Instance Summary

1 feature has a notable impact and individually accounts for over 20% of the prediction.

Comparison Summary

Overall predictions vary potentially due to 9 features contributing differently from both instances

Base instance: 7 Instance 7, Actual: 129900, Prediction: 126024.98

300,000 280,000 260,000 240,000 220,000 200,000 180,000

С

Intercept

Fred Hohman

@fredhohman Georgia Tech

Arjun Srinivasan Georgia Tech

Steven Drucker Microsoft Research

We thank the GT Vis Lab and the anonymous reviewers for their constructive feedback. Funded by a NASA PhD Fellowship.

