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Attention

[Selvaraju, et al., ICCV, 2017]
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[Selvaraju, et al.,
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[Smilkov, et al., arXiv, 2017]
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Scalably summarize and interactively visualize
neural network feature representations
for millions of images
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Fig. 4. Our approach for aggregating activations and influences for a layer . Aggregating Activations: (A1) given activations at layer [, (A2)
compute the max of each 2D channel, and (A3) record the top activated channels into an (A4) aggregated activation matrix, which tells us which
channels in a layer most activate and represent every class in the model. Aggregating Influences: (I11) given activations at layer / — 1, (12) convolve
them with a convolutional kernel from layer [, (I3) compute the max of each resulting 2D activation map, and (I14) record the top most influential
channels from layer [ — 1 that impact channels in layer I into an (I5) aggregated influence matrix, which tells us which channels in the previous layer

most influence a particular channel in the next layer.

6.2 Aggregating Inter-layer Influences

Aggregating activations at each convolutional layer in a network will
only give a local description of which channels are important for each
class, i.e., from examining A! we will not know how certain channels
come to be the most representative for a given class. Thus, we need a
way to calculate how the activations from the channels of a previous
layer, / — 1, influence the activations at the current layer, /. In dense
layers, this influence is trivial to compute: the activation at a neuron
in / is computed as the weighted sum of activations from neurons in
[ — 1. The influence of a single neuron from / — 1 is then proportional
to the activation of that neuron multiplied by the associated weight to
the neuron being examined from /. In convolutional layers, calculating
this influence is more complicated: the activations at a channel in / are
computed as the 3D convolution of all of the channels from / — 1 with
a learned kernel tensor. This operation can be broken down (shown
formally later in this section) as a summation of the 2D convolutions
of each channel in / — 1 with a corresponding slice of the appropriate
kernel. The summations of 2D convolutions are similar in structure
to the weighted-summations performed by dense layers, however the
corresponding “influence” of a single channel from / — 1 on the output
of a particular channel in / is a 2D feature map. We can summarize this
feature map into a scalar influence value by using any type of reduce
operation, which we discuss further below.

We propose a method for (1) quantifying the influence a channel from
a previous layer has on the activations of a channel in a following layer,

the j' kernel, and the resulting maps are summed to produce a single

channel in Y. We care about the 2D quantity X. . ; x K:({ ), as it contains

exactly the contributions of a single channel from the previous layer to
a channel in the current layer.

Second, we must summarize the quantity X. . ; * K:(,{,)i into a scalar
influence value. Similarly discussed in Sect. 6.1, this can be done in
many ways, e.g., by summing all values, applying the Frobenius norm,
or taking the maximum value. Each of these summarization methods
(i.e., 2D to 1D reduce operations) may lend itself well to exposing
interesting connections between channels later in our pipeline. We

)

chose to (I3) take the maximum value of X. . ; * K:(’f’i as our measure
of influence for the image classification task, since this task intuitively
considers the largest magnitude of a feature, e.g., how strongly a “dog
ear’ or “car wheel” feature is expressed, instead of summing values for
example, which might indicate how many places in the image a “dog
ear” or “car wheel” is being expressed. Also, this mirrors our approach
for aggregating activations above.

Lastly, we must aggregate these influence values between channel
pairs in consecutive layers, for all images in a given class, i.e., create

the proposed I’ matrix from the pairwise channel influence values. This
process mirrors the aggregation described previously (Sect. 6.1), and

we follow the same framework. Let Lf f be the scalar influence value

computed by the previous step for a single image in class c, between
channel / in layer / — 1 and channel j in layer /. We increment an en

arize graph
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What kind of input would cause a neuron to maximally activate?
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Feature Visualization

What kind of input would cause a neuron to maximally activate?

Generate examples: starting from random noise,
optimize an image to activate a particular neuron

mixed4b, 409
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Feature Visualization

What kind of input would cause a neuron to maximally activate?

Generate examples: starting from random noise,
optimize an image to activate a particular neuron

mixed4b, 409 [Olah, et al., Distill, 2017]
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Unexpected Features

No more people features.
But few "fish" features! Mostly textures.
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Discriminable Features

Do neural network feature representations align with people’s expectations?
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Discriminable Features

Do neural network feature representations align with people’s expectations?
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What is SUMMIT?

Understanding how neural networks make predictions remains a fundamental
challenge. Existing work on interpreting neural network predictions for images
often focuses on explaining predictions for single images or neurons, yet

predictions are computed from millions of weights optimized over millions of

iImages—such explanations can easily miss a bigger picture.

We present SUMMIT, an interactive visualization that scalably summarizes what
features a deep learning model has learned and how those features interact to

make predictions.

How does it work?

SUMMIT introduces two new scalable summarization techniques that aggregate
activations and neuron-influences to create attribution graphs: a class-specific
visualization that simultaneously highlights what features a neural network

detects and how they are related.

white wolf Attribution
— Graph
— I,
S cointycar] N



Our work joins a growing body of open-access research that aims to use
interactive visualization to explain complex inner workings of modern machine
learning techniques. We believe our summarization approach that builds entire
class representations is an important step for developing higher-level
explanations for neural networks. We hope our work will inspire deeper
engagement from both the information visualization and machine learning

communities to further develop human-centered tools for artificial intelligence.

Credits

SUMMIT was created by Fred Hohman, Haekyu Park, Caleb Robinson, and Polo
Chau at Georgia Tech. We also thank Nilaksh Das and the Georgia Tech
Visualization Lab for their support and constructive feedback. This work is
supported by a NASA Space Technology Research Fellowship and NSF grants IIS-
1563816, CNS-1704701, and TWC-1526254.

Summit: Scaling Deep Learning Interpretability by Visualizing Activation
and Attribution Summarizations

Fred Hohman, Haekyu Park, Caleb Robinson, and Duen Horng (Polo) Chau.
IEEE Transactions on Visualization and Computer Graphics (TVCG, Proc.
VAST'19). 2020.

« Live demo: fredhohman.com/summit

W Paper: https://fredhohman.com/papers/19-summit-vast.pdf
& Video: https:/youtu.be/J4AGMLvoH1ZU

B Code: https://github.com/fredhohman/summit

Slides: coming October 2019!
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