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While building and deploying ML models 
is now an increasingly common practice, 
interpreting models is not. 
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What is interpretability?

Human understanding 
of a system’s…

internals 
e.g., components 
[Gilpin, 2018]

operations 
e.g., math 
[Biran, 2017]

data mapping 
e.g., input to output 
[Montavon, 2017]

representation 
in an explanation 
[Ribeiro, 2016]

No formal, agreed upon definition  
[Lipton, 2016]
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Capabilities 
of interpretability

Design Probe 
embodying capabilities

Evaluation & 
Investigation 
of probe & emerging 
practice of interpretability 
w/ real users

Gamut Contributions

1.

2.

3.
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Formative research with professional data scientists @
• 4 senior ML researchers
• 5 ML practitioners
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Contribution 1: Interpretability Capabilities



Can we operationalize interpretability?

Formative research with professional data scientists @
• 4 senior ML researchers
• 5 ML practitioners

Prompt: In a perfect world, given a machine learning model, 
what questions would you ask it to help you interpret both 
the model and its predictions?
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Explainable ML Interface
Why does this house cost that much?

What is most important?

What is the difference between these two?

What if I added…

What are similar homes?

Where is it wrong?

Capabilities

Local instance explanations

Feature importance

Instance explanation comparisons

Counterfactuals

Nearest neighbors

Regions of error

C1

C2

C3

C4

C5

C6

From formative research

Definitions + examples 
in the paper!
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Contribution 2: Design Probe

Goal: understand emerging practice of model interpretability



Design probe: “instrument that is deployed to find out about 
the unknown—returning with useful or interesting data.” 
Balance of design, social science, engineering

How to test our capabilities?

[Hutchinson, 2003]
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Goal: understand emerging practice of model interpretability
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How does our design probe support our capabilities?
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User Study

12       data scientists, ~1.5 hours each

Think-aloud + answering questions:
1. data & model questions they wrote before seeing Gamut
2. prepared questions by us

Tutorial → Study → Interview
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Research Questions

RQ1. Reasons for Model Interpretability
Why do data scientists need interpretability and how do they use it in Gamut? 

RQ2. Global v. Local Explanations
How do data scientists use different explanation paradigms?

RQ3. Interactive Explanations
How does interactivity play a role in explainable machine learning interfaces? 

"

#

⚡
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RQ1. Interpretability Needs and Usage "

“…figure out what you want emphasize and what you want 
to minimize. Know your audience and purpose.”

Communication is a spectrum.
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RQ1. Interpretability Needs and Usage "

“I want to understand bit by bit how the dataset features 
work with each other, influence each other.”

Model building and debugging to boost accuracy.
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RQ1. Interpretability Needs and Usage "

“This would help me get to valuable nuggets of information, 
which is what [my stakeholders] are ultimately interested in.”

Data understanding > model deployment.
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RQ1. Interpretability Needs and Usage "

But… eager to rationalize explanations; troublesome 
without healthy skepticism.

Hypothesis generation to help build trust.
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RQ2. Global v. Local Explanations #
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Global 
features + model

Local 
single instances

ML novice 
[1-3 years]

ML familiars 
[3-5 years]

ML experts 
[5+ years]

Contribution 3: Evaluation and Investigation
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RQ3. Interactive Explanations ⚡

Primary mechanism for exploring,
comparing, and explaining predictions

Converse with a model

Could not conceive of non-interactive 

!50
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Takeaways

!51

"

#

⚡

Tailor explanations for specific audiences 
Balance simplicity and completeness

Design and integrate effective interaction 
Interaction key to realizing interpretability & solidify model understanding  
[Weld & Bansal, 2018]
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nonlinear, or “bendy” 
[Jones & Almond, 1992]

General Linear Model

Generalized Additive Model
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