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Recidivism Prediction Self-Driving Cars
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Machine learning is being deployed to

various societally impactful domains |
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https://www.wired.com/story/crime-predicting-algorithms-may-not-outperform-untrained-humans/
https://www.youtube.com/watch?v=YN_KUw81130
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Unfortunately, these systems can
perpetuate and worsen societal biases
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Algorithms Have Nearly Mastered Human

Media So

pre Language. Why Can’t They Stop Being
risl Sexist?

Machi To fight gender bias, researchers are training language-processing

race, € . . . s
algorithms to envision a world where it doesn'’t exist.

By Lynne Peskoe-Yang

[ ) /] S 3 .c b~ o~ ~




Fairness IS a

wicked problem

Issues so complex and dependent on so
many factors that it is hard to grasp what
exactly the problem is, or how to tackle It.

http://theconversation.com/wicked-problems-and-how-to-solve-them-100047



FairVis
Visual analytics for

discovering biases
In machine learning models
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Challenges for
Discovering Bias




1

Intersectional bias




Gender Overall Accuracy on all Subjects in Pilot Parlaiments Benchmark
Classifier (2017)

== Microsoft |93-7°/°

. 2 FACE** |90-°°/° D i Sparities i n
Gender
Classification

87.9%
|

Buolamwini, J., & Gebru, T. (2018,
January). Gender shades: Intersectional
accuracy disparities in commercial
gender classification. In Conference on
fairness, accountability and
transparency (pp. 77-91).
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Classifier
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Male Subjects
Accuracy

97.4%
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94.4%

Error Rate
Diff.

8.1%

20.6%

14.7%
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Gender
Classifier

Darker
Male

=" Microsoft 94.0%

F Y EACE*

99.3%
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Female

79.2%

65.5%

65.3%

Lighter
Male

100%

99.2%
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94.0%

92.9%

Largest
Gap
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2

Defining Fairness




2) | r * Accuracy? Recall?

False Positive Rate?
F1 Score?

Predictive Power?

Over 20 different
measures of fairness

are found in the ML
fairness literature

Verma, Sahil, and Julia Rubin. "Fairness definitions
explained." 2018 IEEE/ACM International Workshop on
Software Fairness (FairWare). IEEE, 2018.
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Impossibility of Fairness

Calibration
Some measures of

fairness are mutually

Negative
Class
Balance

Positive exclusive, have to

Class | pjck between them
Balance

Kleinberg, Jon, Sendhil Mullainathan, and Manish Raghavan. "Inherent Trade-Offs in the Fair
Determination of Risk Scores." 8th Innovations in Theoretical Computer Science Conference (ITCS
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.
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Challenges
1

Auditing the performance of hundreds or

thousands of intersectional subgroups

2

Balancing dozens of incompatible
definitions of fairness
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Race Accuracy

African-American /3

Asian

Caucasian

Hispanic

Native American

Other
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Race, Sex Accuracy

African-American, Male
Asian, Male

Caucasian, Male
Hispanic, Male

Native American, Male
Other, Male
African-American, Female
Asian, Female

Caucasian, Female

Hispanic, Female

Native American, Female

Other, Female
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Race, Sex Accuracy FPR FNR F1 Precision

African-American, Male 87 74 ol 68 95 86
Asian, Male 83 O3 [/ 74 88 84
Caucasian, Male 80 82 93 Ia 72 88
Hispanic, Male 96 860 385 92 31 63
Native American, Male 89 85 /6 85 93 o7
Other, Male 78 69 90 /6 68 62
African-American, Female (2 (2 99 6/ 75 o1
Asian, Female 84 68 65 O1 a a
Caucasian, Female 88 100 o1 63 87 95
Hispanic, Female /0 94 99 Ia (7 64
Native American, Female 82 65 65 08 81 /8
Other, Female 86 08 72 83 72

69 |
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FairVis Audit Classification for Intersectional Bias Minimum Size:0 @
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FairVis

Auditing the COMPAS Model

Risk scoring for recidivism prediction
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Use Case T

Auditing for Suspected Bias
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Visualize specific subgroups

Performance of the
African-American Male subgroup



Accuracy Precision Recall
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GENERATE SUBGROUPS
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Race [j
Visualize all the combinations of

subgroups for selected features

Sex ] ] )
= African-American Male, Caucasian Male,

African-American Female, etc.
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FairViS Audit Classification for Intersectional Bias Minimum Size: 368 —@ RESET GROUPS
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Use Case 2

Discovering Unknown Biases

29



A

Suggested Subgroups
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Shape Classification 70% Accuracy




Cluster 2
50%

Cluster 4
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Similar Subgroups
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Intersectional Multiple Definitions

Bias of Fairness
By tackling

Fa i rViS Enables users to find biases In their models

Audit for Explore Suggested &

Known Biases Similar Subgroups
@ O

Allowing
users to




| earn more at bit.ly/fairvis

FAIRVIS

Visual Analytics for Discovering
Intersectional Bias in Machine Learning “= Carnegie Melion

] . : o Do o * *
Fa||"V|s Audit Classification for IntersectionalBias Minimum Size 1298 —@ RESET GROUPS

GENERATE SUBGROUPS

Age

Fred Hohman
Georgia Tech

Minsuk Kahng
Oregon State

Jamie Morgenstern
University of Washington

Polo Chau
Georgia Tech

Suggested Subgroups ~

38



