

FAIRVIS Visual Analytics for Discovering Intersectional Bias in Machine Learning

Will Epperson Georgia Tech

Fred Hohman Georgia Tech

IEEE VIS 2019

Minsuk Kahng Oregon State

Jamie Morgenstern Univ. of Washington

Polo Chau Georgia Tech

W UNIVERSITY of WASHINGTON

Recidivism Prediction

Machine learning is being deployed to various societally impactful domains

Angwin J, Larson J, Mattu S, Kirchner L. 2016. Machine bias: There's software used across the country to predict future criminals and it's biased against blacks. www.propublica.org https://www.wired.com/story/crime-predicting-algorithms-may-not-outperform-untrained-humans/

Self-Driving Cars

Wilson, B., Hoffman, J., & Morgenstern, J. (201), Predictive inequity in object detection. *arXiv preprint arXiv:1902.11097*. <u>https://www.youtube.com/watch?v=YN_KUw81130</u>

Recidivism Prediction

Unfortunately, these systems can perpetuate and worsen societal biases

Angwin J, Larson J, Mattu S, Kirchner L. 2016. Machine bias: There's software used across the country to predict future criminals and it's biased against blacks. www.propublica.org https://www.wired.com/story/crime-predicting-algorithms-may-not-outperform-untrained-humans/

Self-Driving Cars

Wilson, B., Hoffman, J., & Morgenstern, J. (201) Predictive inequity in object detection. *arXiv preprint arXiv:1902.11097*. <u>https://www.youtube.com/watch?v=YN_KUw81130</u>

Fairness is a **wicked problem**

Issues so complex and dependent on so many factors that it is hard to grasp what exactly the problem is, or how to tackle it.

http://theconversation.com/wicked-problems-and-how-to-solve-them-100047

Visual analytics for discovering biases in machine learning models

FairVis Audit Classification for Intersectional Bias

GENERATE SUBGROUPS	Accuracy	Preci	ision 🛞	Recall 🛞	Specific
Age	Accura	су			
	0%	10%	20%	30%	40%
C_charge_degree	Precisi	on			
o_criarge_degree	0%	10%	20%	30%	40%
	Recall				
Race	0%	10%	20%	30%	40%
	Specifi	city			
	0%	10%	20%	30%	40%
Sex					
	Sugge	ested Subg	roups 👻	-	

FairVis

Challenges for Discovering Bias

Intersectional bias

Gender Classifier	Overall Accuracy on all Subjects in Pilot Parlaiments Benchmark (2017)
Microsoft	93.7%
FACE++	90.0%
IBM	87.9%

Disparities in Gender Classification

Buolamwini, J., & Gebru, T. (2018, January). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on fairness, accountability and transparency (pp. 77-91).

Gender Classifier	Female Subjects Accuracy	Male Subjects Accuracy	Error Rate Diff.
Microsoft	89.3%	97.4%	8.1%
FACE++	78.7%	99.3%	20.6%
IBM	79.7%	94.4%	14.7%

Gender Classifier	Darker Male	Darker Female	Lighter Male	Lighter Female	Largest Gap
Microsoft	94.0%	79.2%	100%	98.3%	20.8%
FACE++	99.3%	65.5%	99.2%	94.0%	33.8%
IBM	88.0%	65.3%	99.7%	92.9%	34.4%
Contract of					

Defining Fairness

12

Fairness Definitions

Accuracy? **Recall? False Positive Rate?** F1 Score? **Predictive Power?**

Over 20 different measures of fairness are found in the ML fairness literature

Verma, Sahil, and Julia Rubin. "Fairness definitions" explained." 2018 IEEE/ACM International Workshop on Software Fairness (FairWare). IEEE, 2018.

Impossibility of Fairness

Calibration

Pick 2

Negative Class Balance

Positive Class Balance

Kleinberg, Jon, Sendhil Mullainathan, and Manish Raghavan. "Inherent Trade-Offs in the Fair Determination of Risk Scores." 8th Innovations in Theoretical Computer Science Conference (ITCS) 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

14

Auditing the performance of hundreds or thousands of intersectional subgroups

Chalenges

Balancing dozens of incompatible definitions of fairness

15

Race African-Americ Asian Caucasian Hispanic Native America Other

	Accuracy
can	73
	77
	79
	91
an	88
	67

Race, Sex

African-American

Asian, Male

Caucasian, Male

Hispanic, Male

Native American,

Other, Male

African-American

Asian, Female

Caucasian, Fema

Hispanic, Female

Native American,

Other, Female

	Accuracy
n, Male	60
	86
	96
	91
, Male	75
	81
n, Female	97
	66
ale	73
9	91
, Female	92
	84

Race, Sex	Accuracy	FPR	FNR	F1	Precision	
African-American, Male	87	74	61	68	95	
Asian, Male	83	93	77	74	88	
Caucasian, Male	80	82	93	71	72	
Hispanic, Male	96	86	85	92	81	
Native American, Male	89	85	76	85	93	
Other, Male	78	69	90	76	68	
African-American, Female	72	72	99	67	75	
Asian, Female	84	68	65	91	71	
Caucasian, Female	88	100	91	63	87	
Hispanic, Female	76	94	99	71	77	
Native American, Female	82	65	65	98	81	
Other, Female	86	98	72	83	72	

GENERATE SUBGROUPS	Accurac	y X Preci	sion 🗙	Recall 🗙		
Age	Accu	racy				
	 0%	10%	20%	30%	40%	
C_charge_degree	Preci 0%	sion 10%	20%	30%	40%	
	Reca	.11				
Race	0%	10%	20%	30%	40%	
	Sugg	gested Subgr	roups 🖣			
Sex		Group 1		4	l Inst	ances
		C_charge_	degree	Misdemeanor		
Priors_count		Misdemea		Felony	0%	50% 100
		Race Native Ame	erican	Native American African-American Asian Caucasian	-	50% 100
Days_b_screening_arrest		Sex		Male	-	
		Male		Female		50% 100

Minimum Size: 0 🏾 🌑

GENERATE SU	BGROUPS	Accuracy X Precision X	Recall
Age			
C_charge_degr			
Race			
Sex		biology	
Priors_count		RAINE AMERICAN	Dring for
Days_b_screening_a	arrest	Sex Male	0% 50% 100% Male – Female – 0% 50% 100%

Male

0% 50% 100%

Female

Use Case 1 Auditing for Suspected Bias

Age		Accuracy		ecision(
C_charge_degree	e	0% Precisior	10%	20%
Race		0% Recall	10%	20%
		0%	10%	20%
Sex				Vi
Priors_count				\fric

sualize specific subgroups

Performance of the can-American Male subgroup

Accuracy X Precision X Recall X

Accuracy 0% 10% 20% 30% 40%

Precision

0% 10%	20%	30%	40%

Recall

0%	10%	20%	30%	40%

Accuracy Precision Recall Accuracy Accuracy 0% 10% 20% 30% 40%

Precision

				1.0.0.1
0%	10%	20%	30%	40%

Recall

0%	10%	20%	30%	40%

= Subgroup of African-American Males

GENERATE SUBGROUPS		Accuracy X Precision X Recall X
Age		Accuracy 0% 10% 20% 30% 40%
		Precision
C_charge_degree		0% 10% 20% 30% 40%
		Recall
Race		0% 10% 20% 30% 40%
	_	Suggested Subgroups 👻
Sex		Group 1 4 Instances
		C_charge_degine Filter for S
Priors_count		Misdemeanor large St
		African-American – Asian – Native American Caucasian – 0% 50% 100
D I	_	

Minimum Size: 0

RESET

0%	20%	40%	60%	80%	100%
			0%		
		Ground	Truth Lab	el Balan	се
Feat	ure			Pinned	
Size					

Sort by: Accuracy 🔻 < 1 - 2 >

GROUPS
EXPORT
7 %
Hovered

GENERATE SUBGROUPS		Accuracy X Precision X Recall X
Age		Accuracy 0% 10% 20% 30% 40%
C_charge_degree		Precision 0% 10% 20% 30% 40%
Race		Recall 0% 10% 20% 30% 40% Suggested Subgroups
Sex		Group 1 Select prefe Misdemeanor C_charge_degree
Priors_count		Misdemeanor In This 50% 100
D	_	Race African-American 0% 50% 100

Minimum Size: 368

					_	
Gro	up De	tails			EX	PORT
0%	20%	40%	60%	80%	100%	
		Ground	0% Truth Lab	el Balano	ce	
Featu	ıre			Pinned		Hovered
Size						

red me	trics,	
ase the	Felony – Misdemeanor –	
	0% 50%	
itive rat	friess-American - Asian -	
African-American	Caucasian – Hispanic –	

GENERATE SUBGROUPS		Accuracy X False Positive Rate X
Age		Accuracy
		0% 10% 20% 30% 40% avg: 29.35%
C_charge_degree		False Positive Rate
		0% 10% 20% 30% 40%
		Suggested Subgroups 👻
Race		
		Group 1 425 Instances Misdemeanor –
Sex		C_chargCompare th MisdemCompare th
		with the high
Priors_count		African-American Hispanic - false pos
		Male – Male – Sex Female – Male – Male – Male – 0% 50% 100
Deve la construction construct	_	076 50% 100

Minimum Size: 368

-

Gro	up De	tails			E
0%	20%	40%	60%	80%	100%
			0%		
		Ground	Truth Labe	el Balan	ce
Feat	ure		I	Pinned	
Size					

GROUPS
EXPORT
7
Hovered

Use Case 2 **Discovering Unknown Biases**

Shape Classification

70% Accuracy

Cluster 1 88%

Cluster 3 50%

X

×

Similar Subgroups

Generated	28	5 Instances	Generated		549 Instances
Feature Difference	Pinned	Similar	Feature Difference	Pinned	Similar
race	African- American	Other	sex	Male	Female
Group 4 Generated	162	1 Instances	Group 5 Generated		9 Instances
Feature	Dispod	Similar	Feature	Dinned	Cimilar

By tackling

Intersectional Bias

FairVis Enables users to find biases in their models

Allowing users to Audit for Known Biases

FAIR RUS

Learn more at bit.ly/fairvis

Visual Analytics for Discovering Intersectional Bias in Machine Learning

FairVis

Audit Classification for Intersectional Bias

GENERATE SUBGROUPS		Accuracy	Preci	sion 🛞	Recall 🚫	Specificity	y 🙁		05.000/		×
Age		Accura	су					avg:	65.86%		
		0%	10%	20%	30%	40%	50%	60% avg:	70% 66.05%	80%	90%
C_charge_degree		Precisi 0%	on 10%	20%	30%	40%	50%	60%	70%	80%	90%
		Recall						avg: 60.77%			
Race		0%	10%	20%	30%	40%	50%	60%	70% avg: 70.65%	80%	90%
		Specifi 0%	city 10%	20%	30%	40%	50%	60%	70%	80%	90%
Sex		Sugge	ested Subg	roups 👻					Sort by:	Accuracy	· < 1
Defense accurat	_		Group 1			425 Instance		roup 2		685 Inc	stances
Priors_count						Felony -		Felony -			tances
			C_charge_degree Misdemeanor			Misdemeanor - 0% 50% 100%			C_charge_degree Felony Misdemeanor-		

Alex Cabrera Carnegie Mellon

Will Epperson Georgia Tech

Fred Hohman Georgia Tech

Minsuk Kahng **Oregon State**

Jamie Morgenstern University of Washington

Polo Chau Georgia Tech

