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Graph Vertices Edges Time(s) Layers
Google+ 24K 39K ~0 10
arXiv astro-ph 19K 198K ~0 47
Amazon 335K 925K ~0

US Patents 3.8M 17M 11 41
Wikipedia (German) 3.2M 82M 225 320
Orkut 3.1M 117M 02 01
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Scalable K-Core Decomposition for Static Graphs
Using a Dynamic Graph Data Structure

Alok Tripathy, Fred Hohman, Duen Horng Chau, and Oded Green

Georgia Institute of Technology

Abstract—The k-core of a graph is a metric used in a
wide range of applications, including social network analytics,
visualization, and graph coloring. We present two new parallel
and scalable algorithms for finding the maximal k-core in a
graph. Unlike past approaches, our new algorithms do not rebuild
the graph in every iteration — rather, they use a dynamic graph
data structure and avoid one of the largest performance penalties
of k-core — pruning vertices and edges. We also show how to
extend our algorithms to support k-core edge decomposition for
different size k-cores found in the graph. While our new algo-
rithms are architecture independent, our implementations target
NVIDIA GPUs. When comparing our algorithms against several
highly optimized algorithms, including the sequential igraph
implementation and the multi-thread ParK implementation, our
new algorithms are significantly faster. For finding the maximal
k-core in the graph, our new algorithm can be up-to 58 x faster
the igraph and up-to 4x faster than ParK executed on a 36 core
(72 thread) system. For the k-core decomposition algorithm, we
saw even greater and more consistent speedups for our algorithm
where it was up-to 130 x faster than igraph and up-to 8x faster
than ParK. Our algorithms were executed on an NVIDIA P100
GPU.

I. INTRODUCTION

Network graphs are now a ubiquitous data type and model
many natural and synthetic phenomena in our modern world.
However, analyzing graph data to gain insight into a network
remains challenging. In a recent online survey conducted to
gather information about how graphs are used in practice,
researchers discovered that graph analysts rated scalability
and visualization as the most pressing issues to address [1].
Modern day graphs can easily grow to billions of vertices
and edges; therefore, as graphs grow in size and become
more complex, the need for scalable sense-making algorithms
becomes critical for gaining insight into modern day large
graphs.

Modern day graph algorithms, for example edge decomposi-
tion algorithms based on fixed points of degree peeling, show
strong potential in helping people explore unfamiliar graph
data [2]. This decomposition, based on the well-studied k-
core decomposition, has been shown to be useful for graph
exploration, navigation, and visualization [3]. The heart of
this edge decomposition algorithm requires computing the
maximal k-core for a graph. From graph theory, the k-core of a
graph is a maximal subgraph in which all vertices have degree
at least k. k-core is not only vital to edge decomposition algo-
rithms, but also powers a diverse set of graph exploration tools
and systems with applications in large-scale visualization [4],

[S], graph clustering [6], hierarchical structure analysis [5],
and graph mining [7]. It has been shown that k-core can
be computed in linear time by iteratively removing minimum
degree vertices from a graph using a separate list of vertices
per degree [8]. This process of removing minimum degree
vertices 1s commonly called pruning, and it is the primary
computation by which k-core and edge decompositions rely
on.

In this paper, we present two fast and scalable algorithms
for finding the maximal k-core of a graph, and extend these to
two edge decomposition algorithms for breaking down a graph
into smaller subgraphs based on the k-core sizes. Our new
algorithms do not require rebuilding the graph after pruning in
each iteration of edge composition. Rather, we use a dynamic
graph data structure to avoid one of the largest performance
penalties of k-core decomposition.

While our new algorithms are architecture independent,
our implementations target NVIDIA GPUs. Furthermore, we
run extensive experiments on a wide range of graphs, with
different topological properties and scales, to evaluate our
algorithms. We compare against the current state-of-the-art
results found in literature, including the highly optimized
sequential igraph implementation and a multi-thread ParK
implementation [9].

Contributions

In summary, the contributions of this paper are as follows:
e Scalable, maximal k-core algorithms. We introduce two
fast and scalable algorithms for finding the maximal k-core of
a graph. Both use a dynamic graph data structure to avoid the
penalty of rebuilding the graph after each pruning phase of the
algorithm. The first has parallel bottlenecks, but would likely
perform well on a sequential processor. The latter performs
much better in parallel and on a GPU. When compared
with a sequential igraph implementation and a multi-threaded
ParK[9] implementation with 72 threads, our second algorithm
can be up to 58 x faster than igraph and up to 4 faster than
ParK (though it is sometimes slower than ParK).
e Scalable k-core decomposition. We introduce two dif-
ferent k-core decomposition algorithms for breaking down
the graph into smaller subgraphs for different k-core sizes.
These algorithms also use a dynamic graph data structure.
Our first algorithm uses a large number of small edge udpates,
whereas our second algorithm uses a small number of large
edge updates. As a GPU supports thousands of lightweight

Scalable K-Core Decomposition for
Static Graphs Using a Dynamic Graph
Data Structure

Alok Tripathy, Fred Hohman, Duen Horng (Polo)
Chau, Oded Green

IEEE International Conference on Big Data.
Seattle, WA, USA, 2018.
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Demo: Understanding Word Embedding Graph
Nodes: 66K words from Wikipedia

Edges: 214K (connect words with small distance)
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A 3D Decomposition Overview
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User Study

Goal: use Atlas to spot interesting patterns, mimicking their own work

Graph Analysts Graphs 271
Researcher, Symantec Yelp Reviews Network
Researcher, NASA SEC Insider Trading Graph
Systems engineer, NASA GloVe Word Embed. Graph

All PhDs + use graphs daily or weekly

Intro questionnaire — Atlas tutorial = Study — Exit questionnaire
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User Study Findings

3D for overview, 2D for details

* 3D useful forintro to new data — get a “feel” for the graph
e Graph Ribbon + Layers view used more precisely
« Show nearest neighbors used frequently

Identifying and linking meaningful graph substructures
» Vertex clones as traversal mechanism between layers

Application to anomaly detection

o “...analysis (using [both] vertex clones and layers) naturally reveals
potentially anomalous substructures and vertices. This is highly
useful from a cybersecurity perspective.”

33



Future Work

39



Future Work

e Automatically suggest interesting layers

| X

40



Future Work

Automatically suggest interesting layers
« Dynamic graph decomposition visualization
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Future Work

Automatically suggest interesting layers
 Dynamic graph decomposition visualization
Visual scalability (e.g., super-noding, edge bundling, graph motif)
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