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Abstract
Lack of diversity in data collection has caused
significant failures in machine learning (ML) ap-
plications. While ML developers perform post-
collection interventions, these are time intensive
and rarely comprehensive. Thus, new meth-
ods to track & manage data collection, iteration,
and model training are necessary for evaluating
whether datasets reflect real world variability. We
present designing data, an iterative approach to
data collection connecting HCI concepts with
ML techniques. Our process includes (1) Pre-
Collection Planning, to reflexively prompt and
document expected data distributions; (2) Col-
lection Monitoring, to systematically encourage
sampling diversity; and (3) Data Familiarity, to
identify samples that are unfamiliar to a model
using density estimation. We apply designing
data to a data collection and modeling task. We
find models trained on “designed” datasets gen-
eralize better across intersectional groups than
those trained on similarly sized but less targeted
datasets, and that data familiarity is effective for
debugging datasets.

1. Introduction
Curating representative training and testing datasets is funda-
mental to developing robust, generalizable machine learning
(ML) models. However, understanding what is representa-
tive for a specific task is an iterative process. ML practi-
tioners need to change data, models, and their associated
processes as they become more familiar with their modeling
task, as the state of the world evolves, and as products are
updated or maintained. Iteration directed by this evolving
understanding seeks to improve model performance, often
editing datasets to ensure desired outcomes.
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Failure to effectively recognize data quality and coverage
needs can lead to biased ML models (Mitchell et al., 2020).
Such failures are responsible for the perpetuation of sys-
temic power and access differentials and the deployment of
inaccessible or defective product experiences. Yet building
representative datasets is an arduous, historically difficult
undertaking (Tayi & Ballou, 1998; Sambasivan et al., 2021)
that relies on the efficacy of human-specified data require-
ments.

To ensure a dataset covers all, or as many, characteristics
as possible, specifications must be the result of a compre-
hensive enumeration of possible dimensions—an open and
hard problem that few have practically grappled with in the
context of ML. Further contributing to this difficulty is the
realization that it is not enough for the training datasets to be
aligned with expected distributions: they must also include
enough examples from conceptually harder or less com-
mon categories if said categories are to be learned (Asudeh
et al., 2019). Failure to sufficiently consider both the crit-
ical dimensions of data and their relative complexity can
have troubling consequences. Instances of such missteps
span issues of justice, healthcare, hiring practices, voice
and face recognition, and loan qualifications, wherein biases
of data and algorithms limit technological use and cause
harm (Buolamwini & Gebru, 2018; Asudeh et al., 2019;
Palanica et al., 2019; Angwin et al., 2016; Noble, 2018). Yet
understanding these data requirements even after training is
difficult; knowing them a priori is exceptionally so.

Rather than emphasize tools that enable better collection and
data iteration practices—that design better data—research
in fairness and machine learning has largely focused on
prescriptive “how-to” frameworks, definitions of fairness,
and post-collection analysis techniques (Amershi et al.,
2019; Yang et al., 2020). While there are exceptions to
this (Hohman et al., 2020b), the hidden technical debt (Scul-
ley et al., 2015) accumulated from poor data design remains
an under explored space. To reduce this technical debt and
encourage diverse datasets, methods of externalizing data
collection, iteration, and training are necessary checks for
ensuring datasets reflect diverse experiences and are robust
when deployed in real-world models.

Contributions We present designing data, an iterative, bias
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Figure 1. Designing data includes (I) Pre-Collection Planning, (II) Collection Monitoring, & (III) Data Familiarity. Each supplements
the other, and should be used iteratively.

mitigating approach to data planning, collection, and ML
development; we implement this approach in an interactive
dashboard that scaffolds each step for practitioner use. Mo-
tivated by 24 formative interviews 3, designing data is a
structured, holistic parallel to the current standards for de-
veloping production-quality datasets (Hohman et al., 2020b).
Each step proactively introduces interventions to improve
models prior to deployment:

1. Pre-Collection Planning prioritizes reflexive consid-
eration for domain and data needs prior to modeling,
documents expected distributions of attributes, and
highlights potential biases through questions related to
class or characteristic representation within data.

2. Collection Monitoring communicates insight into
dataset evolution, allowing users to make targeted ad-
justments to collection processes based on new insight
or disparities between expected distributions and exist-
ing data.

3. Data Familiarity borrows from Out-of-Distribution
(OOD) methodologies to identify data that a model
perceives as unfamiliar, creating new directives for
data and model iteration.

We demonstrate designing data’s effectiveness through a
case study using inertial measurement units (IMU) data–
time series data representing X, Y, & Z positioning–to clas-
sify hand position while texting. First, we collected data
iteratively, using Pre-Collection Planning and Monitoring
steps to build a diverse dataset. Then, we use leave-one-out
cross-validation to evaluate how these initial steps influence
performance. Finally, we evaluate familiarity to first de-
bug a dataset, then to direct collection efforts. Each step is
centralized within a dashboard. We find models trained on
highly diverse data outperform those trained on less diverse
data across intersectional groups.

2. Related Work
ML Documentation A close alternative to designing data
is model and dataset documentation, such as Model Cards
(Mitchell et al., 2019) or Datasheets for Datasets (Gebru
et al., 2021). Such work details what to include within said

documentation for transparency in downstream model and
dataset use (Koesten et al., 2019; Bender & Friedman, 2018;
Arnold et al., 2019). This type of documentation has been
widely adopted (Hopkins & Booth, 2021). However, docu-
mentation on its own is limited, as it typically accompanies
a model or dataset upon release rather than shaping its de-
velopment. For instance, Model Cards do not explicitly
guide how to reconcile model weakness or actively direct
data collection to improve fairness–rather, they are intended
for transparency. Our contribution is embedding the trans-
parency revealed by such documentation into our designing
data process and dashboard. Through simple prompts, users
actively surface and engage with their priors–which later
informs their evaluation.

Reflexivity and Self-Reflection In social science, the prac-
tice of reflexivity is a way to externalize implicit subjec-
tivity present in data collection and interpretation (Fish &
Stark, 2021; Dodgson, 2019). Reflexivity entails deliber-
ately examining practitioners’ own assumptions, practices,
and belief systems, then contrasting them with alternative
perspectives. This acknowledges positionality—how differ-
ences in social position and power shape identities. While
reflexivity is typically practiced retrospectively, (Soedirgo
& Glas, 2020) outlined how it could be an active process
through “ongoing reflection about our own social location
and [...] our assumptions regarding others’ perceptions.”
This approach includes recording assumptions of position-
ality; routinizing reflexivity; including other actors in the
process; and communicating reflexive outcomes with data.

Separate from yet related to reflexivity is recent data visual-
ization work prompting viewers to reflect on their individual
beliefs of data (Kim et al., 2018; Hohman et al., 2020a).
Examples of this include The New York Times “You Draw
It” visualizations, where readers draw a projected trendline
of what they think the data looks like and then compare that
projection with the real data (Aisch et al., 2015; Katz, 2017;
Buchanan et al., 2017), and an MIT Tech Review article
illustrating the complexity of building fair recidivism mod-
els wherein readers change different hyperparameters then
contrast their outcomes to existing models (Hao & Stray,
2019; Stray & Hao, 2020). Such visualizations act as pow-
erful tools ensuring self-reflection—an important factor in
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building representative datasets.

Learnability and Familiarity Having diverse character-
istics with sample size parity in data is one step towards
mitigating bias but does not ensure equitable learning across
classes. Instead, these approaches ignore data learnability:
having an equal number of samples per class neglects the
fact that some classes are inherently easier to learn than oth-
ers (Ben-David et al., 2019; Schapire, 1990; Klawonn et al.,
2019). Unfortunately, this complexity might not become
apparent until after deployment. In order to build better
systems, discovering what has not been learned by a model
is critical. In the past, testing data acted as a proxy for this
evaluation. But while test datasets offer excellent thresholds
for performance expectations, these are not the same mea-
surements: testing accuracy measures whether a model was
correct in its classification without consideration for how
it reached its conclusion. For this reason, models are often
poorly calibrated (Van Calster et al., 2019). To address this,
we use density estimation (DE)–a common technique for
measuring OOD–to evaluate how familiar a model is to a
given sample. Our implementation of DE is most similar to
(Lee et al., 2018), who use it to detect anomalous samples
post-training (e.g., adversarial attacks). Unlike prior work,
we extend DE techniques into training to direct data efforts.

Our use of DE to guide data collection is a response to two
drawbacks we note from other work seeking to improve
data representation and model performance: (1) alternative
approaches require prior awareness of what facets of data
are variable—for data that people are unaccustomed to, this
might be impossible—and (2) measuring diversity within a
given dataset does not account for what the model actually
learns (Hooker, 2021; Schmidt et al., 2018). Because it is
model outputs that we are concerned for, these are important
weaknesses to counter.

3. Formative Interviews
To understand ML practitioners’ data collection needs, we
conducted 24 semi-structured exploratory interviews with
individuals possessing extensive machine learning and data
collection experience within a large technology company.
The interviewees ranged from ML research scientists and
designers focused on ML experiences to engineering prod-
uct managers. Interviews lasted ∼ one hour. As interviews
progressed, common themes surfaced that directed our at-
tention to issues of data coverage and representation. We
describe those themes (T1-T3) below.

Critical dimensions of data are hard to know a priori
(T1). A proactive approach to data collection requires know-
ing what axes are important for observation. As one inter-
viewee put it, “how do we know who and what is missing?”
This was a shared difficulty described in nearly all inter-
views. While it is typically impossible to have a complete

understanding of critical dimensions of the data before start-
ing data collection, there are some common characteristics
for human-centric data collection based on existing knowl-
edge of population statistics and power imbalances. How
useful that information is depends on the context of how
the data is used—for example, a person’s accent and speech
pathology are important factors in speech recognition, but
not for creating a personalized wine recommendation. Un-
like summary statistics, surfacing noisy data or missing
subsets–essentially “debugging” data– requires significant
effort. As another interviewee said, “fairness analysis is
useful to a point”. Generic tools for surfacing these nuanced
limitations of data do not exist, but there is both need and
desire for them (Holstein et al., 2019).

Difficulty of collection leads to compromises (T2). Data
collection is a difficult process to launch, requiring signifi-
cant tooling. This difficulty contributes to issues of repre-
sentation in data, as the emphasis in early data collection is
on how to collect and structure data rather than building a
complete picture of what to collect for. Further, early collec-
tion efforts tend to prototype, making convenience sampling
canon. In human-centric data (e.g. speech or movement),
such requirements can encumber diversity across many axes.
This has the potential to inhibit robust ML—while there is
a natural iteration in datasets stemming from distribution
shift (Quionero-Candela et al., 2009) and collectors’ evolv-
ing understanding, it is a cycle full of forking paths (Kale
et al., 2019; Hohman et al., 2020b) and dead-ends.

Model failures are invisible without participation and
iteration (T3). Real world failures are only visible when
communicated. But that communication comes from those
invested enough in the tool, system, or research agenda to
make the effort to bridge the communication gap. To quote
an interviewee: “The people who had issues were invisible
to the system because they didn’t like using it”. Unlike other
domains which employ tools to surface and track issues
via user engagement, there are currently no tools that ad-
dress the gap between a deployed ML product (let alone
its early prototype) and a user. Such gaps are widened by
language and knowledge barriers, and the products them-
selves are inaccessible to many who do not align with the
priors on which the system is built. As these limitations
have substantial downstream impacts, we sought to intro-
duce early, comprehensive data & model checks to facilitate
easy pivoting during data collection.

4. Designing Data
Existing bias mitigation and model evaluation approaches
attempt to address the themes uncovered in our formative
interviews but are not comprehensive to data collection and
machine learning pipelines. In response to this disparity,
we propose an iterative approach to data collection and ma-
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Figure 2. (A) Dashboard prompts practitioners through designing their datasets. (B) Before collection, the dashboard prompts documenta-
tion of expected distribution. (C) These are visualized as histograms. (D) As data is collected, true distributions (pink) overlay expected
distributions (blue), highlighting divergent patterns.

chine learning that we call designing data. Designing data
responds to our themes by introducing interventions before,
during, and after collection & training. Shown in Figure 1,
each step is intended to complement the others, compensat-
ing for their limitations to holistically improve the develop-
ment and deployment process. We describe each below.

I: Pre-Collection Planning To facilitate broader consid-
eration of critical facets of data, data design requires ex-
plicit documentation of what will be collected—including
expected dimensions and distributions of data—before col-
lection begins. Our documentation process ensures develop-
ers pay close attention to data diversity and coverage early
in an ML pipeline and creates reference points for com-
parison when new information is uncovered. This process
aligns with prior work in heuristics, implicit bias, cognition,
and fake news susceptibility: deliberation—reflection—can
correct intuitive mistakes, such as those made in data collec-
tion (Pennycook & Rand, 2019; Bago et al., 2020; Toplak
et al., 2011; Saul, 2013). While it is difficult to enumer-
ate all critical factors, this first step in our designing data
process provides scaffolding, responding to our first theme
(T1): critical dimensions of data are hard to know a priori.

As shown in Figure 2 (A), Pre-Collection Planning asks
a series of questions to prompt reflexive consideration for
individuals’ personal biases through a series of open-text

prompts, drop-down selections, and simple declarations.
When the data relates to a human subject (i.e., images of
faces, movement data, or voice recordings), our dashboard
prompts self-reported demographic information about teams
or individual users involved in developing the dataset. After,
users are asked what data distributions they expect. This is
an important step: prior work suggests that simply recogniz-
ing such information (Fish & Stark, 2021; Kim et al., 2017),
and introducing design frictions (Gullström, 2012; Penny-
cook et al., 2020), may improve the quality of data work.
An example of the dimensions and related distributions is
shown in Figure 2. From these inputted dimensions, audits
of population statistics, missing data, and undersampled
subsets are presented to users. Different categories of the
data, including demographics, metadata, task specifics, class
representation, and intersectional categories are visualized.

II: Collection Monitoring By stating expected distribu-
tions prior to collection, auditing the data against those
distributions is straightforward, allowing readjustments to
be made quickly when necessary. Each view reflects the
data’s evolution, allowing real-time insight on where addi-
tional collection is needed. Our dashboard includes graphs
highlighting distribution disparities that were perpetuated
or introduced as the data was collected, as shown in Fig-
ure 2 (D). These charts benefit users by noting when the data
collection process is either skewed (for example, through
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convenience sampling) or when previously stated expecta-
tions did not align with reality. This step’s iterative nature
shortens the response time to correct fundamental errors in
data, highlighting limitations that may have remained unno-
ticed, as described in our second and third themes: difficulty
of collection leads to compromises (T2), and model failures
are invisible without participation and iteration (T3).

III: Data Familiarity After a model is trained, understand-
ing what it has and has not learned appropriately is critical
1. The value in this form of auditing is significant: some
data may prove more difficult to learn due to their inherent
complexity, or from not having enough similar examples.
Despite the increased rigor of data collection as result of our
earlier designing data steps, expected and actual data distri-
butions might not match the learning needs for the model,
thus requiring a stop gap such as under or oversampling,
generating synthetic data, or continued data collection. We
adopt density estimation (DE) to measure how familiar our
model is with individual data points. While DE for OOD
detection is well studied (Gawlikowski et al., 2021), our use
of DE to direct data work (e.g. collection and annotation) is
unique. By gaining insight on how a partially trained model
perceives data, we can focus efforts on the most useful sub-
sets, reweighting or replacing the data accordingly. In this
way, even though difficulty of collection leads to compro-
mises (T2), we are able to interactively uncover remaining
issues, as suggested by (T3).

Unfamiliar samples are “edge cases”—those that either are
not represented appropriately within the dataset, are particu-
larly challenging for the model to learn, or were erroneously
collected (e.g., noisy). In early dataset development, famil-
iarity scores act as useful checks for data with little signal—
samples where we expect the model to perform well yet may
be noisy and thus require human inspection . To measure
the familiarity of the data, we incorporate density estimates
of layer activations across a neural network (NN). We focus
on the penultimate layer before the prediction softmax as it
is the final feature representation used to make a prediction.
Passing N inputs through the network produces an activa-
tion matrix A(N) ∈ RN×M for all M neurons in subset of
selected layers L′ ⊆ L. We learn a Gaussian Mixture model
on these layer activations as given by the following:

p(x|λ) =
M∑
i=1

wig(x | µi,Σi) (1)

where x is a matrix of layer activations, wi, i = 1, ...,M
are the mixture weights, and g(x|µi,Σi), i = 1, ...,M are
the component Gaussian densities 2. For each sample in the

1The purpose of designing data is not to replace existing tools
but rather to encourage a holistic approach that incorporates new
ML techniques. For interventions during training, we refer to
existing literature (Murphy, 2012; Japkowicz & Stephen, 2002).

2This mode of DE is interchangeable with other DE or OOD

current training set, we obtain the activations from layer l,
then use PCA to reduce its dimensionality. This projection
step serves two purposes: it reduces the dispersion of points
that is typical in high dimensional spaces , and makes the
remaining computation more tractable.

We then perform a Variational Bayesian estimation of a
Gaussian mixture (Zobay, 2014) in the projected space. The
fitted GMM allows us to give a familiarity score to each new
sample. Given this sample, we extract the activation from
the same layer l, again apply dimensionality reduction, then
evaluate the log-likelihood provided by the fitted GMM—
this is our familiarity score. If the sample falls into a densely
populated area, its log-likelihood will be high: from the
perspective of the features extracted by the current state
of layer l, this sample appears as familiar. Conversely,
if the sample falls into a scarcely populated area, its log-
likelihood will be low and the sample less familiar. This
measurement can be applied to new samples—those not seen
by a model previously—or on training samples. Familiarity
scores are presented in our dashboard through a series of
graphs depicting their range and frequency, providing users
direction for future data efforts; samples that are unfamiliar
are reconciled with human expectations.

5. Task Selection, Data Collection, Modeling
We instantiated our designing data approach through a hu-
man activity recognition (HAR) task using inertial mea-
surement unit (IMU) data— While designing data generally
applies to all data collection and machine learning processes,
our selection of data type and task were motivated by the
unique challenges IMU data presents to building data di-
versity. First, IMU data inherently lacks the closeness of
mapping (Blackwell et al., 2001) that image and audio data
have to human models of the world, making it more difficult
to audit. Recognizing when IMU data coverage is incom-
plete can be difficult when compared to image data as levels
of abstraction often obfuscate fundamental problems in a
dataset (Ramasamy Ramamurthy & Roy, 2018; Bartram
et al., 2021)). Second, IMU data requires contextualiza-
tion to create meaning—real-time labeling, or additional
information from audio and video—and is harder to collect,
unlike images and audio clips which are now ubiquitous (Ra-
masamy Ramamurthy & Roy, 2018). Yet IMU data still has
the potential to bias ML models. Thus, we evaluate design-
ing data’s merit within a typically challenging context.

Our experimental task resembles work by Goel et al. (2013),
who improved mobile text entry by categorizing different
hand positions when users typed. Before collection, par-
ticipants provided demographic information and metadata.
This included race, ethnicity, gender, sex, age, hand length
(mm), nail length (mm), hand dominance, phone version and

methods such as (Wkeglarczyk, 2018; Lee et al., 2018).
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phone size. We collected data from 33 participants recruited
over three separate periods in response to data disparities
highlighted by our dashboard. In total, we collected > 3.88
million measurements from 1455 sessions. This data is used
to populate dashboard, train and evaluate classifiers, then
refined according to familiarity evaluations. We use 1D
convolutional neural nets (CNNs) for classification 3.

6. Modeling Experiments
The ability to produce diverse subsets does not guarantee
appropriate representation of sensitive attributes. Our ap-
proach to encouraging fair outcomes considers the amal-
gamation of both data and model. The following experi-
ments adapt the following definition of fairness—rather than
seek a high average accuracy across classes, we look at nu-
anced performance—accuracy, loss, and misclassification—
between intersectional groups. To this end, we consider
several questions as part of our designing data evaluation:
(Q1) Does auditing to increase data diversity improve model
generalizability? and (Q2) Is data familiarity useful in au-
diting model & data? We evaluate our interventions through
a series of modeling experiments. First, we show that di-
verse data does lead to better performance. Then, we use
familiarity to uncover noisy data within the dataset and de-
scribe how removing these samples impacts intersectional
accuracy. Finally, we show that supplementing the dataset
with unfamiliar samples improves model performance.

6.1. Diverse Data: Does auditing to increase data
diversity improve model generalizability?

We sought to answer Q1 through our first set of experiments.
We compare “diverse” models to “less diverse” models. We
do so for two reasons: first, it may not be clear to practi-
tioners that collecting diverse data early in development is
critical to building functional tools. Second, despite best
efforts to curate a list of meaningful characteristics, we did
not know if these additional data dimensions had any true
effect on the classification task.

Both diverse and less diverse models are trained using the
same number of training samples and are evaluated on the
same test data. Less diverse models are trained on data
where one group (e.g. small handed) was left out. In this
way, we perform leave-one-out cross-validation and con-
sider the specific effects of a given demographic group.
All models were trained with the same sample size. We
then generate predictions from the original test set. Paying
close attention to intersectional groups, we expect to see
more performance stratification in less diverse models. We
compare models across overall, group-specific, and intersec-
tional accuracies. We hypothesize that some categories are

3See appendix for details on data processing, modeling, and
iterating with Pre-Collection Planning & Monitoring

more meaningful to performance than others. Performance
disparity—such as lower accuracy—across categories de-
spite equal sample size would support this hypothesis.

Evaluation When compared to models trained on less di-
verse data, we found that models with diverse data had an
overall higher accuracy and performed better across intersec-
tional groups, as shown in Figure 3. For example, Figure 3
B shows a significant dip in performance for the model
trained without data from the right-side-left condition com-
pared to diverse model (Figure 3 C). This is as we antici-
pated, and we see that for data where participants were typ-
ing in the right-side-left condition, the less-diverse model
actually performs worse than random chance. This pattern
is repeatable—across k models where we intentionally left
out one group (Figure 3 A), we see a correlated diagonal of
lighter color indicating lower testing accuracy, supporting
our hypothesis that the extensive characteristics we collected
data for do effect IMU performance. In contrast, diverse
models show less performance variance, instead performing
better across different demographics—matching what we
would hope to achieve to minimize worst group generaliza-
tion (Sagawa et al., 2019). We found some intersectional
subgroups performed drastically different compared to their
overall group performance. In typical evaluations, this nu-
ance is often obfuscated by aggregation, yet we were able
to capture it using simple interventions and visualizations.

6.2. Familiarity: Is data familiarity useful in auditing
model & data?

There are two scenarios where familiarity is useful in di-
recting dataset iteration: to facilitate data cleaning, and to
encourage appropriate representation of diverse data for a
given model. When a dataset contains noisy data, familiarity
can help surface these samples for human evaluation. If a
dataset has already been cleaned, then familiarity is used to
highlight samples that less familiar. We evaluate familiar-
ity’s efficacy in directing dataset iteration (Q2) through a
series of experiments to improve performance on the same
testing data used in subsection 6.2, modifying training data
but maintaining sample size parity. Modifications to the
training data are completed using “self-familiarity” scores
(i.e., familiarity of training data) to avoid overfitting.

6.2.1 Familiarity for Debugging Our dataset was col-
lected “in the wild” without additional annotation from par-
ticipants. While participants were given clear instructions,
we anticipated that a small number of samples would show
significant noise or distortion—participants might drop their
phones as they type, or switch hands part way through a
session. Such samples may introduce unwanted effects
downstream if left uncaught. Given the size of the dataset,
inspecting time series plots for each session was untenable.
Instead, incorporating familiarity may greatly reduce the
number of samples to evaluate. By using an least partially
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Figure 4. (A) Accuracy for intersectional subgroups in a diverse data model. (B) Difference in accuracy for subgroups before & after
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trained model on the dataset to uncover unfamiliar samples,
familiarity offers a possible solution to capture noisy data,
presenting an alternative to work such as (Pleiss et al., 2020;
Shen & Sanghavi, 2019), which incorporate loss as a metric
for capturing noisy samples. We hypothesize that least fa-
miliar samples within a noisy dataset will include instances
of noisy data posing the greatest harm to the model.

We explored how to incorporate familiarity as a tool for
debugging first through an automated approach to removing
data, then by incorporating human review. Our protocol is
as follows: first, we train an initial model on all available
training data. We apply self-familiarity to the training and
testing set, selecting only 0.1% of the data corresponding to
least familiar samples. This data is either removed from the
dataset, or visualized and manually reviewed per sample to
evaluate if they are truly noisy or simply uncommon. We
removed the same number of samples with manual review
of truly noisy data as with the automated removal 4. We
compared outcomes of both automated removal and removal
through human review, but found that deleting a percentage
of least familiar data removed both noisy data and important
outliers. We evaluate this outcome by comparing the results
of the following experiment to improve data diversity across
each approach to data cleaning when compared to a baseline
where no data is removed.

Evaluation In practice, we found that familiarity worked
well as a tool for debugging. Before removing noisy data
from the complete dataset, a large percentage of the least
familiar samples showed significant distortion, despite our
efforts to normalize the data. Because of the presence of
these noisy data, running our familiarity experiments with
data that was not cleaned did not show the same levels
of general improvement. In this case, matching metadata
to noisy samples was not the correct comparison—these
samples were not exemplars of the subpopulation.

In manually evaluating our unfamiliar data before removal,
we uncovered cases where unfamiliar samples were not
noisy but rather underrepresented intersectional groups. For
instance, a person identifying as an Asian Female with
Small hands and Large phone was as unfamiliar to the
model as incredibly noisy examples. Noisy data has differ-
ent implications for the model than unusual samples. For
this reason, removing 0.1% of the least familiar data prior to
experiments did not improve performance to the extent seen
when manual review was implemented. That is, familiarity
cannot distinguish between distorted noise and underrepre-
sented or OOD data. For datasets where significant noise is
present, human review is necessary to evaluate data quality.

6.2.2 Familiarity for Diverse Data Coverage Next, we
compare familiarity scores across the different descriptive

4Experimental protocol can be found in the Appendix.

groups, as described in Section 6.1. These scores are used
determine next steps for additional data collection, augmen-
tation, or modified (over/under) sampling. Here, we sample
out a percentage of the most familiar data, and add data
matching the intersectional characteristics for the same per-
centage of least familiar data. Substituted data was held out
from training in Section 6.1, thus is new to the models. We
replace samples based on metadata characteristics, using
combinatorial optimization to best match unfamiliar data.
Using PCA, we project down to 50 dimensions, then fit
5 GMMs to last dense layer for each 1D CNN trained in
Section 6.1. Scoring our training data, we save familiarity
scores and model weights. We vary the range of familiarity
scores to sample from, percentage of data, and two sam-
pling in methods—top k and random selection from a least
familiar data range—compared to a random baseline. We
structure these experiments—varying window size and sam-
pling percentage—to uncover a sweet spot: removing too
much data may harm performance on familiar groups, and
too large a window might impinge on less familiar data.

Evaluation Self-familiarity scores create a distinct curve,
with unfamiliar data falling into the long-tail. We find ac-
curacy scores are far more striated prior to familiarity in-
terventions, showing some concepts are learned better than
others. Following familiarity interventions, models do show
targeted improvement. Models performed more poorly in
regions with high numbers of low familiarity data (an ex-
ample of which is shown in Figure 4). Of note, models
did not necessarily improve overall—although this was fre-
quently the case— instead showing improvement in areas
of low performance and regression in those with high per-
formance. In Figure 4, we show model performances on
intersectional groups: (A) is a model trained on the diverse-
data-scene dataset with no familiarity intervention. We can
see lower accuracies in back-bed-left and right-side-left
compared to other subgroups. In contrast, sitting-left and
back-bed-right had much higher accuracy compared to
other subgroups. Figure 4 (B) shows the difference between
this model and one trained on the same data with familiar-
ity interventions. Regions with relative poor performance
improved dramatically, while those with higher accuracies
showed some regression. Incorporating 0.1% least familiar
data was optimal for our experiments. Overall, familiarity
consistently captured under-represented samples.

7. Conclusion
We need processes that integrate data and models in sys-
tematic, transparent ways. While each step of designing
data can be incorporated in isolation, the interventions are
complimentary, compensating for the cascading effects of
upstream and downstream missteps. Data is shaped by the
perspective of the observer; our work highlights how sys-
tematic processes may curtail bias early in development.
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Mouchet, M. A., Villéger, S., Mason, N. W., and Mouil-
lot, D. Functional diversity measures: An overview of
their redundancy and their ability to discriminate commu-
nity assembly rules. Functional Ecology, 24(4):867–876,
2010.

Murphy, K. P. Machine learning: A probabilistic perspec-
tive. MIT press, 2012.

Noble, S. U. Algorithms of oppression: How search engines
reinforce racism. NYU Press, 2018.

Noroozi, F., Kaminska, D., Corneanu, C., Sapinski, T., Es-
calera, S., and Anbarjafari, G. Survey on emotional body
gesture recognition. IEEE Transactions on Affective Com-
puting, 2018.

Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schubert,
L., Ye, K., and Mordvintsev, A. The building blocks of
interpretability. Distill, 3(3):e10, 2018.

Palanica, A., Thommandram, A., Lee, A., Li, M., and Fossat,
Y. Do you understand the words that are comin outta my
mouth? voice assistant comprehension of medication
names. NPJ Digital Medicine, 2(1):1–6, 2019.

Papadopoulos, A., Kyritsis, K., Klingelhoefer, L., Bostan-
jopoulou, S., Chaudhuri, K. R., and Delopoulos, A. De-
tecting parkinsonian tremor from imu data collected in-
the-wild using deep multiple-instance learning. IEEE
Journal of Biomedical and Health Informatics, 24(9):
2559–2569, 2020. doi: 10.1109/JBHI.2019.2961748.

Pennycook, G. and Rand, D. G. Lazy, not biased: Suscepti-
bility to partisan fake news is better explained by lack of
reasoning than by motivated reasoning. Cognition, 188:
39–50, 2019.

Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G., and
Rand, D. G. Fighting covid-19 misinformation on social
media: Experimental evidence for a scalable accuracy-
nudge intervention. Psychological Science, 31(7):770–
780, 2020.

Pleiss, G., Zhang, T., Elenberg, E. R., and Weinberger,
K. Q. Identifying mislabeled data using the area under
the margin ranking. arXiv preprint arXiv:2001.10528,
2020.

Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and
Lawrence, N. D. Dataset shift in machine learning. The
MIT Press, 2009.

11



Designing Data: Proactive Data Collection and Iteration for Machine Learning

Ramasamy Ramamurthy, S. and Roy, N. Recent trends
in machine learning for human activity recognition—a
survey. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 8(4):e1254, 2018.

Rosenfeld, E., Ravikumar, P., and Risteski, A. The
risks of invariant risk minimization. arXiv preprint
arXiv:2010.05761, 2020.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks for group shifts:
On the importance of regularization for worst-case gener-
alization. arXiv preprint arXiv:1911.08731, 2019.

Samadi, S., Tantipongpipat, U., Morgenstern, J. H., Singh,
M., and Vempala, S. The price of fair pca: One extra di-
mension. In Advances in Neural Information Processing
Systems, pp. 10976–10987, 2018.

Sambasivan, N., Kapania, S., Highfill, H., Akrong, D., Par-
itosh, P. K., and Aroyo, L. M. ”everyone wants to do
the model work, not the data work”: Data cascades in
high-stakes ai. 2021.

Saul, J. Scepticism and implicit bias. Disputatio, 5(37):
243–263, 2013.

Schapire, R. E. The strength of weak learnability. Machine
Learning, 5(2):197–227, 1990.

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and
Madry, A. Adversarially robust generalization requires
more data. In Advances in Neural Information Processing
Systems, pp. 5014–5026, 2018.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T.,
Ebner, D., Chaudhary, V., Young, M., Crespo, J.-F., and
Dennison, D. Hidden technical debt in machine learning
systems. In Advances in Neural Information Processing
Systems, pp. 2503–2511, 2015.

Shen, Y. and Sanghavi, S. Learning with bad training
data via iterative trimmed loss minimization. In Interna-
tional Conference on Machine Learning, pp. 5739–5748.
PMLR, 2019.

Soedirgo, J. and Glas, A. Toward active reflexivity: Posi-
tionality and practice in the production of knowledge. PS:
Political Science & Politics, 53(3):527–531, 2020.

Stray, J. and Hao, K. Interactive visualization of fairness
tradeoffs. Computation + Journalism Symposium, 2020.

Tayi, G. K. and Ballou, D. P. Examining data quality. Com-
munications of the ACM, 41(2):54–57, 1998.

Toplak, M. E., West, R. F., and Stanovich, K. E. The cog-
nitive reflection test as a predictor of performance on
heuristics-and-biases tasks. Memory & Cognition, 39(7):
1275, 2011.

Van Calster, B., McLernon, D. J., Van Smeden, M., Wynants,
L., and Steyerberg, E. W. Calibration: the achilles heel
of predictive analytics. BMC medicine, 17(1):1–7, 2019.

VanderPlas, J., Granger, B., Heer, J., Moritz, D., Wong-
suphasawat, K., Satyanarayan, A., Lees, E., Timofeev, I.,
Welsh, B., and Sievert, S. Altair: Interactive statistical
visualizations for python. Journal of Open Source Soft-
ware, 3(32):1057, 2018. doi: 10.21105/joss.01057. URL
https://doi.org/10.21105/joss.01057.

Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M.,
Viegas, F., and Wilson, J. The What-If Tool: Interactive
Probing of Machine Learning Models. IEEE TVCG, 26,
2019. doi: 10.1109/tvcg.2019.2934619.

Whittaker, R. H. Evolution and measurement of species
diversity. Taxon, 21(2-3):213–251, 1972.

Wieringa, M. What to account for when accounting for
algorithms: A systematic literature review on algorithmic
accountability. In Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency, pp. 1–18,
2020.

Wkeglarczyk, S. Kernel density estimation and its applica-
tion. In ITM Web of Conferences, volume 23, pp. 00037.
EDP Sciences, 2018.

Yang, K., Qinami, K., Fei-Fei, L., Deng, J., and Rus-
sakovsky, O. Towards fairer datasets: Filtering and
balancing the distribution of the people subtree in the
imagenet hierarchy. In Proceedings of the 2020 Confer-
ence on Fairness, Accountability, and Transparency, pp.
547–558, 2020.

Zheng, W., Wang, X., Fang, H., and Cheng, H. Coverage-
based search result diversification. Information Retrieval,
15(5):433–457, 2012.

Zobay, O. Variational Bayesian inference with Gaussian-
mixture approximations. Electronic Journal of Statistics,
8(1):355 – 389, 2014.

A. Data Collection
We built a custom iOS data collection app using the Swift
programming language with public frameworks including
SwiftUI, CommonCrypto, and CoreMotion. The app col-
lects right and left-handed texting data across different con-
texts people may type in, such as texting while walking or
laying down. Example views of the app are shown in Fig-
ure 5. All data were collected with informed consent. Dur-
ing collection, participants were given instructed how to
hand posture when holding the phone. While this approach
produces consistent data for training purposes, this limited
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the inherent variability within the data. We simplified the
task to binary handedness (typing with the left or right hand),
but introduced a source of natural variability by prompting
users to perform a series of actions in parallel while typing.
This contrasts (Goel et al., 2013), who collected data while
users sat in a lab environment. We introduced 6 typing sce-
narios (walking, sitting, standing, lying on your back, lying
on your side, and lying on your front) to represent a selection
of possible contexts users might normally experience typ-
ing. Participants were then asked to type an English phrase
from MacKenzie and Soukoreff’s phrase set (MacKenzie
& Soukoreff, 2003) using their left or right hand for a to-
tal of 6 (positions) × 4 (typing sessions) × 2 (hands) = 72
trials. Entered phrases were recorded as a trial. Partici-
pants were automatically redirected to the iOS Measure
app to determine hand and nail length. The app disabled
keyboard autocomplete and autocorrect. Beginning when
people pressed “start”, we collected data was collected at
a sampling rate of 200 Hz. When the task was finished,
metadata, IMU data, and trial metadata (including scenario,
phrase, keyboard recording, and session time) were pushed
to an encrypted database.

B. Dashboard & Questions
We built our dashboard in JupyterLab using Altair (Van-
derPlas et al., 2018), a declarative visualization library for
Python, and Ipywidgets (Grout et al., 2019). As shown in
Main Body Figure 2 (A), the dashboard asks a series of ques-
tions to prompt reflexive consideration for the team or indi-
viduals personal biases. Using drop-down selections, they
are asked to describe their team’s representational make-
up—including race, accessibility needs, age, sex and gender
identities. After filling out this information, users are told:

“The following groups and their subsequent intersections are
not participating in your project development. To ensure
an optimal result, take steps to consider how their experi-
ences and views might differ from the currently represented
ones.” This notice is followed by a list of demographic
information not identified by the users. This is an important
step: prior work has shown that simply recognizing such
information (Fish & Stark, 2021; Kim et al., 2017), and
introducing design frictions (Gullström, 2012; Pennycook
et al., 2020), can increase the quality and consideration that
goes into data work.

One limitation to this procedural approach is how scoped
our questions are—they are not all-encompassing, but in-
tended to start the process of reflection and inquiry early
on. As a final step in this reflexive process, and to minimize
this limitation, a series of open-ended questions that take
in free-form text asks, “What’s missing, in the context of
your project?” followed by some examples that expand on
axes of diversity teams might need to consider. Users are

then asked to enter expected dimensions and distributions
of data before collecting data (Main Body Figure 2 B,C).
When distributions have incorrect values (i.e., do not add
up to 100%), the dashboard normalizes. This active expres-
sion of expected data encourages users to acknowledge and
document the specific limitations of their data, setting a
precedent of conscious decision making from the beginning.
It creates a simple provenance for early assumptions and a
baseline to evaluate against during data collection.

From these inputted dimensions, audits of population statis-
tics, missing data, and undersampled subsets are presented
to users, reflecting During Collection. New dimensions can
be added as needed. Different categories of the data, includ-
ing demographic information and metadata (described in the
participant subsection), task specifics, and class represen-
tation are then shown in visualizations Figure 2. Similarly,
intersectional categories (such as age and hand size) are
shown. This view reflects the data evolution as more data
is collected, allowing real-time insight into what additional
collection might be required. Following collection, the dash-
board allows users to use a pre-trained model or train their
own. Following training, saved states of a neural network
and model architecture are loaded into our familiarity func-
tions. Data is inputted to build out familiarity scores, the
final step in our designing data process.

B.1. Visual Examination of Familiarity

Log-likelihood is a relative measure. Given our interest in
the spread of familiarity scores across different categories
within the dataset, we introduced the visualizations shown
in Figure 8 and Figure 9 into the dashboard for quick
insight into if there are particular subsets that are seem less
familiar than others. An overview of the familiarity scores
can be seen in Figure 6 For example, with a close look
we see that the least familiar samples across genders are
consistently female. Similarly, we see our oldest age-range
(¿56) is least familiar for age. This view can be compared
across iterations of data or model development for a gestalt
of the changes in familiarity.

C. Case Study: Reflecting on Our Data
Collection Process

It was unclear how diverse IMU data would influence
our modeling experiments, or if the categories developed
through our reflexive prompts would meaningfully align
with variation within the data. Prior work on human ges-
tures has shown age (Lee et al., 2020), emotion (Noroozi
et al., 2018), and health (Papadopoulos et al., 2020) influ-
ence gesture presentation. The tilt of a smartphone during
texting is captured by IMU data, and can be associated to
back posture (Kim et al., 2020). Hand position during typ-
ing is similarly distinguishable (Goel et al., 2013), yet IMU
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Figure 5. Our IMU Data Collection App showing the primary screens of the study. Participants entered their demographic information
such as hand dominance, hand and nail length, sex and gender, and age (left). The app instructs a participant to type on their phone using
either their right or left hand in a physical configuration (middle). Participants then type the presented phrase (right).

Figure 6. Overview of familiarity over the two tail ends of the
distribution (most familiar on the right, least familiar on the left).

data collection rarely includes meta information about par-
ticipants. Similarly, context is often not documented for
image data (e.g. the proverbial question of what’s outside
the frame?).

We explored how these and other common demographic
categories influenced model performance and show how
consideration for diverse data should be emphasized prior
to deployment, not just after deployment. We incorporated
our dashboard’s Pre-Collection suite of prompts in our own
IMU data collection to determine what characteristics to col-
lect for. It was through these prompts that we realized a need
to measure additional information as typical demographics
did not capture how people held their phones. We noted that
Phone Size, Hand Size, Handedness, and Nail
Length (particularly in the case of acrylic nails) may play

a role in how people text, despite not being variables typ-
ically considered in such tasks. It was also through this
process of reflecting on impactful features that we realized
the advantages of asking participants to act out various be-
haviors during their typing tasks. This meaningfully shaped
our task. Other measurements that were noted during this
process would have added substantial complexity to our
collection procedure. Most prominent of these was hand
strength and dexterity. These features are impactful to how
individuals type—a person with carpel tunnel or arthritis
will type differently compared to someone without these
conditions—but required additional tooling to accurately
capture. Instead, we noted strength and dexterity for future
evaluation, to be completed prior to public deployment.

The results of Collection Monitoring led to three instances
of additional, retargeted data collection efforts based on
unexpected skew. During our initial data collection, there
were multiple categories which did not match our previously
described distributions. We call out several in Figure 10 to
demonstrate the outcomes of our data collection re-targeting.
While all participants were employees from a large tech
company, we did not anticipate our initial wave of data
collection to be so skewed towards individuals between the
ages of 21 and 40. In truth, we initially had no participants
over 38. As a result, we emphasized diversity in participant
age moving forward with some success—each consecutive
wave improved the data coverage. Familiarity also directed
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Figure 7. Designing data process compared to conventional machine learning development. Reflexivity ensures appropriate consideration
of positionality and expectations is given before prior to collection. Monitoring provides insight into unexpected trends during collection.
Familiarity facilitates debugging and highlights potentially noisy or underrepresented subpopulations to direct iteration. This figure
represents a simplification of the data collection process. The results of Familiarity can also be incorporated into training (after cleaning
the dataset) and tracking (after training an initial model).

our collection efforts, leading us to seek additional data
for an intersectional subset of Female participants with
Large phones and Small hands.

C.1. Collection Retargeting

Similarly, we noted that the majority of our participants
self-described as White, but that there were no Black or In-
digenous participants whatsoever. Despite our best attempts,
this was only partially amended; in optimizing across inter-
sectional groups, we were not able to perfectly match our
expected or updated distributions (at least within the context
of this set of iterations). In contrast, our initially collected
Handedness distribution perfectly matched our expectations.
This prompted a discussion of whether this distribution was
reasonable—despite matching the ratio of left versus right
handedness in US populations, we believed that right and
left handed individuals would type in dramatically different
ways, thus may require sample size parity to be appropri-
ately learned by the model. Examples of our retargeting
efforts can be seen in Figure 10.

D. Modeling
Using Keras, our architecture included two 1D convolu-
tional layers (standard for time series data), max-pooling
layers, a dropout layer, a fully connected dense layer with
ReLu activations, and a fully connected dense layer with
softmax activations. We followed the generic Activity Recog-

nition Chain, which includes pre-processing, segmentation,
feature extraction, and classification steps (Cruciani et al.,
2020) for our approach to modeling. We used 1D convolu-
tional neural nets (CNNs) for sequence classification. The
CNN’s architecture performs feature extraction through the
convolution of the input signal with a kernel (or filter). To
pre-process data, each session was segmented into 200ms
windows, with 40ms overlap between segments. Session
timing varied by how long it took participants to finish typ-
ing a given phrase. We corrected our IMU dataset to account
for gravitational acceleration effects, then normalized (using
a direct current blocker) and segmented IMU data in series
to ensure all windows were of equal length. We discarded
windows containing data from multiple sessions. For train-
ing, one sample equated to a window of the time series data.
Training batch sizes were 256 (batch)×200 (ms)×3 (IMU),
where ms is the window of time, batch is the batch size, and
IMU represents the three accelerometer data sources. All
computations were run on NVIDIA V100 GPUs. Training
all models took approximately 30 hours.

E. Experiments
E.1. Diverse Data Experimental Protocol

We save every model, their weights, training accuracy and
loss curves, and training dataset, keeping track of model
version. Note that each model was trained 10 x 10 times,
keeping the random seed stable for r times, then repeating
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Figure 8. Visual presenting familiarity distributions across differ-
ent categories (part 1). Figure 9. Visual presenting familiarity distributions across differ-

ent categories (part 2).
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Figure 10. Selected views of data distributions across three different waves of data collection. Each new iteration of data collection
was the result of evolving understanding about the data. For Age, initially there were no participants over the age of 38. Handedness
initially met expected distributions, however these did not match downstream needs. In Race, there was substantial skew for White
participants. An error in data collection led to a skew in which scenes were presented to participants.
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Figure 11. Comparison of intersectional groups of a less diverse model (A) to a diverse model (B). Striated accuracy across populations—
as described by the metadata descriptions—performed worse when groups were left out, indicating that these characteristics were aligned
with meaningful diversity in the data.

with a different seed. Weights from the models with highest
accuracy across the trials were kept for later experiments.

First, shuffle then randomly select train and test datasets
such that no typing trials are split across datasets. We save
the test dataset to evaluate every model trained with the
current train/test split. Then, we compare the full dataset
and train/test distributions using a visual check and earth
mover’s distance (EMD). If the difference in distributions
are significant, repeat the first step. We group the data by
category (e.g., Sex) then by type (e.g., Female). Next,
randomly downsample each group such that each subset is
of equal size. We compare the distribution of data sampled
out to the downsampled group data, repeating sampling in
the case of skew, then save the sampled out data. Lastly, we
repeat the prior step but do so from the complete training
set: this is the “diverse” dataset for the category. For each
group within a category, we append all other groups together
and then leave the current group out such that new training
groups were Female

⋃
Intersex (for example). For each

set within a category, train a new model using our previously
described 1D CNN. We monitor for overfitting by setting
early stopping based on loss with a patience of 4.

Finally, the influence of demographics on performance var-
ied. In general, removing activity and age group subsets
was more harmful to models than hand size, gender, or race
subsets, but there were exceptions.

E.2. Familiarity Experiments: Capturing Noisy Data

Different layers of an NN capture distinct features of the
input data (Olah et al., 2018). Familiarity scores can there-
fore be extracted from any layer. Earlier layers capture
fundamental structure found in the input data, while deeper
layers capture semantic content. For this reason, we focus
on the final dense layer, which holds the closest semantic
alignment to human perception. A visual overview of the
familiarity implementation can be seen in Figure 13.

In general, any DE technique can replace our implementa-
tion. Note that the same data shown to a different model is
likely to obtain a different familiarity score; each sample is
tightly coupled to how a specific model perceives it. This
analysis cannot be done on the dataset without the guidance
of an at least partially trained model.

A comparison of noisy data to OOD and more typical sam-
ples is shown in Figure 14.

E.3. Diverse Data With Familiarity

Given our intention was to encourage diversity in our
dataset, an ineffective sampling strategy might exacerbate
edge case failures. We then select a range from the data
distribution to sample the most familiar data from. Thus we
explored three general approaches:
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Figure 12. The performance of every model on the same test set, split across categories. For each category, a model’s label indicates
which subgroup was held out from its training set. To ensure fair comparison, within each category each model was trained on the same
number of instances. Notice for each category that the “diverse” model (highlighted with a darker color), i.e., the model with no subgroup
held out, almost exclusively performs the best, despite having the same number of data instances as the other models.

Figure 13. Overview of familiarity implementation. (1) We fit a Gaussian Mixture Model to our model of interest. (2) We present samples
(e.g. our training data for “self-familiarity”) to the GMM, returning log-likelihood scores.
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Figure 14. Distinct examples of data characterized as most “unfamiliar” to a model. (A) is an example of data we would consider out of
distribution, (B) presents a case of sensor failure—the sensor stopped recording part way through the task—and (C) shows a particularly
noisy sample, likely where someone dropped their phone mid-typing.

1. Replace k most familiar samples with k least familiar
samples;

2. Distributed sampling across a window of k + i most
familiar samples with k least familiar samples, where
i represents a percentage of the overall training set

3. Distributed sampling across a window of k + i most
familiar samples with k + i least familiar samples,
where i is a percentage of the training set

Each sampling mechanism was compared across multiple k
and k + i values to determine the relative “sweet spot” for
our sampling strategy given a particular training dataset. We
randomly select X percent of best and worst scores, vary-
ing percentage between 0.5%—0.01%. We train model(s)
on each variation of window size and sampling percentage,
repeating the previous steps k times to ensure a multifold val-
idation, then comparing the intersectional performances of
M1 to the new model Mi trained on the familiarity-informed
dataset. This is repeated per the scenario described in the
full paper.

F. Limitations and Future Extensions of
Familiarity

Distinguishing between rare and noisy data A weak-
ness of familiarity is that we have no current method of
distinguishing noisy samples from out of distribution data.
While an unfamiliar sample might stand out to the model, in
many cases, human review is necessary to evaluate its impli-
cations. For this reason, in very noisy datasets, familiarity
may be a tool best used for debugging. Future research

might seek to incorporate algorithmic methods of distin-
guishing sources of uncertainty, however there is currently
little work on the topic. Existing research either relies on
the learning rate as a proxy for discriminating types of un-
certainty as aleatoric or epistemic (D’souza et al., 2021), for
example, or builds on Bayesian networks (Kendall & Gal,
2017). Both face various weaknesses, and there remains
great need for additional techniques and evaluations.

Familiarity for new data While we explored familiarity
largely from the perspective of “self-familiarity”—that is,
what the model has already been exposed to, it also intro-
duces a mechanism by which we can understand how a
model responds to data it’s previously not seen. This may
offer a mechanism of transparency through which future
users could evaluate how a model responds to new data.
In this work, we computed familiarity from a single layer.
In future work, we will explore how familiarity computed
at different layers can be leveraged. Given that each layer
captures distinct features within the data, aggregating infor-
mation across depths of the model may lead to more holistic
identification of unfamiliar data and what features are more
specifically so to the model. One way to do this is through a
Product of Experts (PoE) paradigm (Hinton, 2002) where
each layer is considered an “expert”.

Comparisons against active learning On the surface,
familiarity appears similar to active-learning (AL). AL re-
quires practitioners to choose which data to use given a
large collection. In our scenario, we must understand which
data to collect or gather when there is no additional data
readily available to run the AL algorithm on. One way to
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Figure 15. Comparison of accuracy on testing data before and after familiarity intervention. Minor regressions are shown, while accuracy
improvements in contrast
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circumvent this difference is to apply AL to the training
set, and then extract statistics on the metadata that the AL
algorithm indicates as most useful. For example, one could
use the entropy of the logits: high entropy on a data point
might be an indication that the model is still uncertain about
such type of data. An issue with such approach is that it
implicitly assumes models are well calibrated, which is not
always the case.

Interactive systems for designing data Designing data
advances how we account for the interplay between data
and model (Hooker, 2021), considering both within the de-
ployment cycle to compensate for missteps in either. In our
case study, we use data visualizations (e.g., Figure 2) to
compare practitioners’ expectations against collected data
distributions, then visualize familiarity to explore rare or
noisy samples. The visualizations and interfaces used in
this work are largely static; however, we see a great op-
portunity to build the designing data process into future
interactive systems and tools for better data work and model
evaluation. From the HCI and visualization communities,
there are a number of interactive systems that have helped
ML practitioners explore their data (Inc., 2021; 201, 2017;
Hohman et al., 2020b) and evaluate their models (Amershi
et al., 2015; Wexler et al., 2019; Görtler et al., 2022); for
an in-depth survey on visual analytics for ML see (Hohman
et al., 2018). Directions for future interactive systems might
include tools to help practitioners reflect on their data col-
lection practices (e.g., digging into their expectations, as
discussed in Appendix C), or tools to direct familiarity anal-
yses.

G. Extended Literature Review
G.1. Fairness, Diversity, and Heterogeneity

Fairness has become an increasingly common consideration
for algorithmic contexts (Drosou et al., 2017). However,
the term has been conflated with justice, bias, ethical ma-
chine learning, equity, diversity, heterogeneity, and inclu-
sion due to cross-disciplinary use and overloaded terminol-
ogy (Mitchell et al., 2020; Celis et al., 2018).

Algorithmic notions of fairness are often presented through
mathematical formalizations intended to ensure anti-
discrimination in the context of classification systems. They
most commonly focus on ML model outcomes, but may
also describe input data or how systems use model re-
sults (Mitchell et al., 2020). ML models incorporate
outcome-specific fairness by adding constraints to ensure
either group or individual parity across classification error
metrics (Mitchell et al., 2020). Group fairness enhanced
models (Friedler et al., 2019) use either anti-classification
(wherein protected attributes are not included in decision
making), classification parity (groups across protected at-

tributes have similar predictive performance), or calibra-
tion (results are independent of protected attributes) meth-
ods (Corbett-Davies & Goel, 2018). In contrast to group
fairness, individual fairness (Dwork et al., 2012) asks that
individuals similar for a task be treated similarly throughout
that task. While well-intentioned, each of these fairness en-
hancing approaches have incited criticism (Corbett-Davies
& Goel, 2018).

Mitchell et al. described diversity, heterogeneity, and fair-
ness as related but distinct concepts (Mitchell et al., 2020).
In contrast to prior work by (Asudeh et al., 2019; Zheng
et al., 2012), which considers a more encompassing def-
inition of diversity—a measure to capture nuance of col-
lection based on variety of constituent elements—Mitchell
et al.’s diversity emphasizes attributes of social concern.
They argue diversity measures that are not specific to social
groups should instead be considered heterogeneity mea-
sures, though diversity has long been interchangeable with
heterogeneity. Mitchell et al.’s argument is understandably
motivated by concerns of specificity and impact, but recon-
ciling what data may confer biasing effects for social groups
with what does not is difficult: can human-agnostic data
exist in data collected by and in reference to people?

Fields with historic interest in diversity or heterogeneity
include information retrieval, ecology, biology, organization
science, sociology, and chemistry, all of which have devel-
oped or employed approaches to measure diversity. These
approaches largely fall into one of the seven following buck-
ets: geometric or distance-based, combinatorial, aggregate,
utility and ranking, coverage, and hybrid distance and cov-
erage based diversity measures (Drosou et al., 2017; Zheng
et al., 2012). Examples of geometric or distance-based mea-
sures of diversity include by dataset’s volume (Mouchet
et al., 2010; Chao et al., 2014; Anari et al., 2016; Celis et al.,
2016; Whittaker, 1972) or by variance such as in principle
component analysis (PCA) (Samadi et al., 2018). In gen-
eral, these metrics more closely match with Mitchell et al.’s
definition of heterogeneity as they do not explicitly refer to
features with societal import and context (Mitchell et al.,
2020). Ultimately, Mitchell et al.’s interpretation of diver-
sity is intended to bring to light social inequalities found
in ML products specifically, while others emphasize the
measure of heterogeneity—comprehensive variety within
the dataset.

Diversity metrics in ML contexts have been used to direct
bias mitigation efforts (Celis et al., 2016). Instances of
this can be found in subset selection, where declarations of
“diversity constraints” define expected frequencies for sensi-
tive values that the data must satisfy (Milani et al., 2020),
or to measure relative coverage within a dataset (Mitchell
et al., 2020). An alternative subset selection technique as-
sociates diversity scores to subsets then chooses subsets
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when probabilities are proportional to this score (Celis et al.,
2016; 2018). Uniformly, these methods act as stopgaps to
biased and/or homogeneous data—particularly common in
the context of data summarizations of big datasets (Celis
et al., 2018).

The ability to produce diverse subsets using diversity met-
rics does not guarantee fairness across samples in the form
of appropriate representation of sensitive attributes (Celis
et al., 2018). Partially, this is because fairness has multiple
measures (Mitchell et al., 2020). Fair treatment across so-
cial groups may also require different things for different
contexts. For instance, consider a dataset in which each data
point has a gender. One notion of group fairness, useful
for ensuring that the ground truth is not distorted, is pro-
portional representation, i.e., the distribution of sensitive
characteristics in the output set should be identical to that of
the input dataset. Another notion of fairness, argued to be
necessary to reverse the effect of historical biases, could be
equal representation where the representation of sensitive
characteristics should be equal independent of the ratio in
the input dataset. The plethora of metrics and evaluative
tools vary and each have ongoing discussions of merit. Ulti-
mately, datasets must be considered in relation to the use at
hand, and the potential harm any failures may cause.

Qualitative research methods, statistics, and survey literature
have historically managed representative data collection
in a variety of ways, from expert panels to standards in
population survey techniques, yet these methods face their
own complications and do not necessarily translate to the
needs of machine learning teams.

G.2. Bias Mitigation

While examples of algorithmic bias are often highlighted by
media outlets, this frequency belies the difficulty of initial
discovery—failures are hard to uncover during development,
thus responsibility often falls to the public via product en-
gagement. In the case of Google Photos, the model could
not distinguish between a gorilla and a Black person and it
was a member of the public that flagged the concerning la-
beling. Situations like racist photo identification algorithms
are not uncommon, and once uncovered are responded to
in a variety of ways. Google’s response was to censor out-
putted labels such as “chimpanzee” and “gorilla” within the
public Photos app search results (?). In their case, the model
could not distinguish between a gorilla and a Black person
because it was not trained to do so—there were not enough
instances of Black faces in the dataset (Asudeh et al., 2019).
Biased data and lack of diverse representation has broad
impacts in domains beyond computer vision. Popular per-
sonalized voice agents, for example, struggle to recognize
foreign accents under certain contexts such as understand-
ing medication names when users correctly pronounced

them (Palanica et al., 2019).

Outside of censoring outputs, bias mitigation strategies can
be divided into three stages of a ML model development:
pre-training (e.g., sample weighting or dataset balancing),
in-training (e.g., adding specific constraints in the function
that is being optimized) and post-training (e.g., by tweak-
ing the prediction in order to ensure some fairness met-
ric) (Donini et al., 2018). Pre-training can be further divided
into collection and post-collection. Despite the fundamental
nature of data collection, typical technical approaches to
bias mitigation focus on post-collection efforts—e.g., modi-
fication of the dataset, reweighting and fine-tuning of hyper-
parameters, filtering output, or some combination therein—
which largely act as stopgaps, are sensitive to underlying
data (Wieringa, 2020) and ultimately may not resolve un-
derlying issues at hand.

Additional complications arise when working with data ac-
quired independently, possibly through a process in which
the data scientist has little or no control. This “found
data” (Ramasamy Ramamurthy & Roy, 2018) introduces
unique challenges to ensuring data coverage for scientists
and engineers. For both found data and big data contexts,
post-collection approaches such as subset selection and class
imbalance corrections like under- or over-sampling are in-
troduced to counter bias and skew (Japkowicz & Stephen,
2002). Yet sampling methods can obfuscate information
about appearance frequency in a dataset—if there are limited
examples of X and so we oversample, then those instances of
X are not unique and may cause the model to infer incorrect
characteristics of a class, affecting accuracy metrics as well
as production performance. These approaches are limited;
for example, when improving a model without access to the
original training dataset, balancing in the traditional sense is
impossible. Regardless of the context, these data balancing
approaches ignore data learnability: having an equal num-
ber of samples per class neglects the fact that some classes
are inherently easier to learn than others (Ben-David et al.,
2019; Schapire, 1990; Klawonn et al., 2019).

Work on ML generalization has looked to avoid the issue
of biases in data distribution and collection altogether by
focusing on the causal relationships within data. Suppos-
edly robust to lack of coverage or variation within a dataset,
Invariant Risk Minimization (IRM) relies on latent vari-
ables within the data—information not explicitly observed,
but rather which are inferred from existing data—to learn
concepts more closely aligned with ground truth (Arjovsky
et al., 2019). IRM has met been met with scepticism, how-
ever, and work by Rosenfeld et al. found that IRM can “fail
catastrophically” unless the test and training distributions
are sufficiently similar (Rosenfeld et al., 2020), ultimately
coming back to the intitial question of how to develop di-
verse datasets that more accurately reflect real world use
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cases.

G.3. Contrasting Familiarity to Other Methods

Lee et al (Lee et al., 2018) is most similar to our proposed
method of familiarity. However, there are several differences
between our work and theirs: they use class-conditional den-
sity estimation, while we do not use labels, thus fit one
model across all classes. We use PCA to reduce activa-
tion dimensionality before fitting the model (DE in high
dimensional space is difficult). Finally, we use a variational
Bayesian estimation of the GMM; they estimate Gaussian
mean and covariance differently.
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