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Abstract
A new kind of widget has begun appearing in the data sci-
ence notebook programming community that can fluidly
switch its own appearance between two representations: a
graphical user interface (GUI) tool and plain textual code.
Data scientists of all expertise levels routinely work in both
visual GUIs (data visualizations or spreadsheets) and plain-
text code (numerical, data manipulation, or machine learn-
ing libraries). These work tools have typically been sep-
arate. Here, we argue for the unique role and potential of
fluid GUI/text programming to serve data work practices.
We contribute a generalized method and API for robust
fluid GUI/text coding in notebooks that addresses key ques-
tions in code generation and user interactions. Finally, we
demonstrate the potential of our method in two notebook
tool examples and a usability study with professional data
science and machine learning practitioners.

Author Keywords
Data Science Programming; Machine Learning Program-
ming; Handoff; Computational Notebooks;

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); Please use the 2012 Classifiers and see this
link to embed them in the text: https://dl.acm.org/ccs/ccs_flat.
cfm

10.1145/3334480.3383085
https://dl.acm.org/ccs/ccs_flat.cfm
https://dl.acm.org/ccs/ccs_flat.cfm


Introduction & Background
Data scientists coordinate between different tools and tasks
in an rapid iterative fashion to experiment with data [5,
1]. Common tasks include data cleaning, visualization,
transformation, and modeling [5, 1]. Common tools include
spreadsheets, chart authoring tools, terminals, metric dash-
boards, code editors, and many code libraries [6, 8, 9].
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Figure 1: The output of the code
df.head() is the first few rows of
the datable df. In a standard
notebook (A), this table is a
view-only rendering. In (B), the
table is a live representation of df
that the user can manipulate like a
normal spreadsheet. In (B), a user
drags a column to move it to the
front of the datatable.

To create a workflow that another person can sensibly repli-
cate, notebook programming has quickly become a popular
choice for anyone from students to professionals experi-
menting with data [13]. A notebook combines cells of for-
matted text/image notes, executable code, and rendered
results in a single interactive document [15]. In this way, a
notebook operates at a higher meta-level than any single
form of work or programming language. It pulls together
into a single page what data scientists otherwise commonly
work with across separate tools: terminal shells, scripts,
temporary output windows, output files, etc. [10]. Notebook
programming has been highly lauded by the scientific com-
puting community, who say that the format makes data work
much easier to share and replicate [11, 17, 13, 12].

We observe that notebook programming, with its relatively
recent rise to popularity, is still actively developing as a
paradigm. This can be seen within the large active online
ecosystem of communities focused on data topics, where
publicly shared notebooks are common [15]. Here, we fo-
cus specifically on how the humble output cell faces an
expanding role. As shown in Figure 1A, an output cell dis-
plays the result of executing the code cell directly above it.
In the traditional sense of interactive programming with a
read-evaluate-print-loop (REPL), output is a view-only final
result. Finality is important here in the notebook’s design.
Consider a notebook’s state holds the current value of each
variable accross the entire notebook. State is only changed

by running the users’ code cells (likely for good security
reasons). An output, on the other hand, is a final endpoint.
It cannot go back and update state. It doesn’t have access.1

Newer widgets built by the community for notebooks tend
to clash against this constraint. They imagine a much more
expansive role for output than a REPL definition provides. It
is common to see output cells, augmented with community-
created tools, contain sophisticated interactive visualiza-
tions2, elaborate ipyWidgets for interactive input, or even
spreadsheets editors3. “Output” is reappropriated as a
space for fully functional graphical user interface (GUI) tools
where data scientists can continue performing useful work.
To illustrate, consider two aligned scenarios:

(A) A data scientist Rey is working in a notebook to ana-
lyze census data [4]. Rey starts by previewing the datatable
(Figure 1A), which shows a standard view-only table. Rey
now writes code to start cleaning the datatable.

(B) Rey sees the same table, but as a fully functional spread-
sheet editor (Figure 1B). Rey quickly begins directly manip-
ulating the table to re-arrange and rename columns so that
the census data is easier to read (Figure 1B).

Both (A) and (B) are completely valid forms of the same
data work. However (B) gives Rey the option to pick or
combine between code or spreadsheet, whichever mode
is easiest to them to achieve their task. We strongly believe
that repurposing output for GUI tool work is fully within the
spirit and ethos of notebooks to combine different forms of

1An exception is ipyWidgets, an influencial widget library that breaks
some of these rules in a carefully controlled way: It allows output widgets
to change the value of specific variables pre-chosen by the user.

2Good examples are visualization platforms plot.ly or bokeh, which
both have interactive notebook widgets.

3See qgrid for an example of widget that approximates a spreadsheet.



data work. GUI tools, like the spreadsheet, are essential
parts of the data scientist’s toolbox. However to actually
achieve a notebook that fluidly combines code with GUI
work requires dealing with some fundamental challenges
around notebook state and user experience.
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# -- generated code —
column_names = list(df)
column_names.pop(6)
column_names.insert(1, "occupation")
df = df.reindex(columns=column_names)
%summon table df
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Figure 2: In (1) the table becomes
a fully interactive spreadsheet. The
user drags and drops a column to
reposition it. In (2) the user’s action
is reflected both in an updated
table rendering and in code.

When Rey rearranges columns of df in the spreadsheet
GUI (Figure 1B), how did this affect the value of df for
the rest of the notebook? Since state is protected from
output, Rey could work all day in the spreadsheet with-
out ever effecting the value of df at all. Although multiple
community-created spreadsheet widgets exist, this state
barrier plagues all of them to various degrees. As long as
GUI tools operate apart from the rest of the notebook state,
all GUI work Rey does is easily lost between sessions.
Rey’s GUI work also loses replicability. It cannot simply be
re-run alongside the rest of the notebook. Some implemen-
tations circumvent these issues by also writing code along-
side spreadsheet actions4. Our goal is to build off of these
early examples towards a generalized method. By carefully
investigating the interaction needs for generalization, we
hope to enable a future where all forms of GUIs, from inter-
active ML tools [3] to complex visualization tools [14], can
provide data scientists with useful work in the notebook.

To inform our goal, dual code and GUI representations of
work has extensive legacy in other domains. The ability
to edit content in either GUI or code form is pervasive in
editors for graphics5 and web design6. This idea has also
appeared in HCI research tools like Juxtapose [7].

Drawn from lessons-learned in prior work, the key of our

4See bamboolib bamboolib.8080labs.com or qgrid github.com/
quantopian/qgrid which both generate some form of code.

5See graphics environement Blender www.blender.org/
6See web design tool Adobe Dreamweaver www.adobe.com/

products/dreamweaver.html

approach is for each GUI action that should affect state, it
is paired with an equivalent code action. Shown in Figure 2,
when Rey moves the “occupation” column in (1), the equiv-
alent move in pandas Python code is auto-generated and
run in (2). The paired code run ensures notebook state is
fully updated and Rey’s actions are recorded. Rey can go
ahead and edit in the GUI or the code however they wish.

Code generation can be highly complex in theory, but here
we rely on a simple code templating trick, discussed below.
We built a small extension for Jupyter notebooks %mage,
which acts as an application programming interface (API)
to allow any GUI tool like table (Figure 2) to seamlessly
generate code and share state with the notebook in a scaf-
folded way. %mage takes care of program analysis and note-
book state concerns, while a GUI tool provides its own user
interactions and code templates for any state-effecting ac-
tions. We discuss the design and tradeoffs of this approach
in detail. Our contributions in this paper are:

1. Discussion of %mage API and design considerations
to make this approach practical to tool builders of any
GUI widget for doing active work in the notebook

2. An implementation of two example GUI tools that use
%mage API: table and plot

3. New kinds of selection and drag-drop interactions
between GUI and code in the notebook.

4. An initial study of our approach, testing the usability
of plot and table with professional data scientists.

%mage API
The %mage API works as an extension to an unmodified
Jupyter Notebook [11]. That said, %mage has more per-
missions than the average extension. %mage accesses the

bamboolib.8080labs.com
github.com/quantopian/qgrid
github.com/quantopian/qgrid
www.blender.org/
www.adobe.com/products/dreamweaver.html
www.adobe.com/products/dreamweaver.html


Jupyter Notebook base application object directly to ana-
lyze, write, and run code. To invoke a GUI tool, as shown
in Figure 2, the user writes a magics syntax %summon, then
the name of the GUI tool, then any parameters for that tool.
In the case of the spreadsheet, this is %summon table df.
Magics syntax is a special kind of meta-command in note-
books that starts with %7. We chose to create a magics
syntax so that it would more clearly stand-out to the user
that the output produced will behave differently than normal
notebook output. Any tool that uses %mage can be “sum-
moned” into the notebook environement, much like a library
import statement. However, anyone replicating %mage’s ap-
proach could choose to use an alternative syntax.

table has a code template 
for filtering a column:  

$DF=$DF[$DF["$COL"]$EXPR]

table sends the template to
mage API, which resolves it as: 
df = df[df["age"] < 65]

mage API inserts this code into the 
user’s notebook cell and runs it:

df = df[df["age"] < 65]
%summon table df

mage API returns a table 
widget with the value of df

table now shows a filtered df

%summon table df

user clicks to  filter by age < 65 

age

0

1

2

90

82

66

?

Private

?

workclass

77053

132870

186061

fnlwgtage

0

1

2

90

82

66

?

Private

?

workclass

77053

132870

186061

fnlwgt

Figure 3: The update cycle for how
a user’s action impacts both GUI
and code. Note the user’s variable
df updates in the normal notebook
way: by running a cell of code.

Figure 3 shows the general workflow of %mage. Upon in-
vocation, %mage finds the correct tool based on its name
(table for the spreadsheet), and calculates the value of
each parameter by consulting notebook state. Required
parameters are set by the individual tool’s creator. For in-
stance, table requires a variable that has the appropriate
type such that it can be displayed in a spreadsheet. Next,
%mage instantiates the GUI widget with its parameter val-
ues, and renders the GUI in an HTML box in the output.

When the user makes an action, such as adding a filter on
table in Figure 3, there’s a question of whether this action
should affect notebook state. If the designers of the table
decide that the action should only affect the tool display,
no API call to %mage is needed. Here for a filter, however,
an updated value of the variable df is needed to show a
filtered table. So, table makes a call to the %mage API to
figure out what that new value df is.

If we zoom out from table, to any GUI tool that might use

7magics start with a token unused by the source language. So this is
% in Python, which we use here, but may be different in other languages.

the %mage API, we run into a techical challenge. How does
%mage know what a filter is and how to compute it? We ini-
tially considered hard-coding tabular data operations into
%mage, but then, what if the GUI is a color picker? Or an im-
age editor? If %mage needs update notebook state based
on a GUI action, and a GUI could do just about anything,
we ultimately decided that a GUI author will need to pre-
cisely define what their actions mean. To fill this need, we
next discuss our adoption of code templates.

Templating Actions from GUI to Code
To translate actions from GUI into some kind of computation
that can affect state, we start from the intuition that pro-
grammers today routinely grab prefabricated code snippets
from various resources online, and adjust those snippets
to fit their scenario [2]. Thus it may not be too burdensome
for a GUI tool creator to author a code snippet that should
accompany a specific GUI action. For instance, say a user
drops a column from their data in the table tool. In Python
with the pandas library8, this is written as:

myData = myData.drop(columns=["dogs"])

Of course, in an interactive tool, we won’t know which col-
umn the user is dropping until the action occurs. Their
datatable may also not be named myData. Re-writing this
code to turn unknown values into a template it becomes:

$DF = $DF.drop(columns=[$COL])

Though we use Python examples, note that templates are
not limited to Python. By writing templates with different
language or library bindings for the same action, a GUI tool
creator can support multiple languages and libraries. %mage
uses type-matching to ensure the correct template is used.

8pandas data manipulation library https://pandas.pydata.org/

https://pandas.pydata.org/


The Full Update Cycle
To pull together the entire update cycle, we return to the
point in Figure 3 where the user filters their data in table.
As soon as this action occurs, table makes an API call to
%mage with its code template for filtering. Additionally, since
the user selected “age” and “< 65”, table can send this
known information to %mage as well. Thus %mage receives:

template $DF = $DF[$DF["$COL"]$EXPR]
where $COL = "age" and $EXPR = "< 65"

By consulting the notebook state, %mage identifies the name
of $DF as df and thus resolves the template as:

df = df[df["age"] < 65]

Now this code is ready to run, %mage inserts the new code
just above the invocation %summon line and requests the
notebook to run the code cell again. When the %summon
code line is re-run this time, %mage does not create a new
table widget. Instead it shows the existing table and
passes table the updated value of df. By displaying the
updated df, the table is now showing a properly filtered
datatable for the user, and the update cycle is complete.

# -- generated code —
cols = list(df)
cols.pop(6)
cols.insert(2, "occupation")
df = df.reindex(columns=cols)
%summon table df

# -- generated code —
df["elder"] = df[df["age"] > 65]
cols = list(df)
cols.pop(6)
cols.insert(1, "occupation")
cols.pop(1)
cols.insert(2, "occupation")
df = df.reindex(columns=cols)
df.drop(columns=["elder"]
%summon table df
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Figure 4: Two code listings for the
same events. In (A), lines 1 and 8
undo each other, since the user
adds and then deletes the same
column. In (A), lines 3-6 a the
column “occupation” is moved
twice, first to position 1, then to
position 2. In (B), these same
events are reduced to reflect the
current state only. There is no
mention of “elder”, since the user
undid that column creation, and
“occupation” moves only once, to
its final destination.

User Experience Design Challenges
Having walked through a simple use case, there are many
more details that come into play when we consider serious
usage between code/GUI work over time. Here we highlight
some of the most challenging design considerations:

Challenge: Interrupted GUI Tool Session
Imagine our user Rey is working on the variable df in the
table tool. Now Rey goes to a different cell in their note-
book, and writes and runs code that changes df. The df
that table displays is now out-of date and incorrect. What

should it do? For this scenario, %mage watches the note-
book state for updates to any variable like df that is actively
being used in a GUI. However, there is no clear answer to
how %mage should react. Either (A) %mage could update
table as soon as it notices this discrepancy, or (B) %mage
could “freeze” table so that the user must re-run table’s
code cell (effectively updating it) before they can interact
with table again. We tentatively chose (B) because today’s
notebooks leave outdated output as-is for the user to view.

Challenge: Multiple Sessions Over Time
Earlier (Figure 3) the user Rey filtered df by “age < 65” in
table. This action auto-generated the matching filter code,
and imagine that table also showed an indicator (as most
spreadsheets do) that the “age’ column is filtered. Now, Rey
goes and manually deletes all previously auto-generated
code from the cell, leaving just the filter code. When Rey
now runs the cell, the question is: Does table still know
that df is filtered (i.e. show a filter indicator on “age”)?

This scenario is the classic the round trip problem. Al-
though table and code were perfectly aligned in the ini-
tial session, as soon as Rey edited the code, table no
longer has a reliable list of what actions occurred —since
some of them may have been deleted and effectively un-
done. Naively, table will display df as if it had never seen
this data before, with no filter indicator. To make an effec-
tive “round trip” would require %mage to be able to read the
user’s code and translate back code into GUI action. To a
limited extent, %mage can do this, by turning table’s code
templates into regular expressions to locate and pass pos-
sible table actions. However, given this approach is lim-
ited, it is unclear how to ensure a smooth user experience.

Challenge: Code Clutter
In early feedback on %mage, practitioners expressed con-
cern that GUI spitting out a line of code for each action



would quickly pile up a mess of code. This is illustrated in
Figure 4. To combat this issue, we take the approach (Fig-
ure 4B) to compose operations into a smaller set. This is
most easily achieved if it is possible to compare the start
state of the GUI tool with the current state. For instance, a
spreadsheet only has a finite set of columns. By compar-
ing which columns were present at the start of the session
versus now, we can combine column-related actions. If a
user dropped four columns, all at different points in time,
that might be compactly written in a single line of code.

A key limitation of this current approach is that it places
the burden on GUI tool authors to create a composed ac-
tion list, which becomes complicated when actions have
order dependencies. Once the GUI tool has composed a
list of templates, %mage fully replaces all previously auto-
generated code from this session with these new templates.
Finally, %mage takes a clean initial copy of state (df be-
fore any GUI work was done on it), and runs the notebook
code with that to ensure table receives the correct value of
df. While the result looks much more like human-authored
code (Figure 4B), composition remains a open issue.

get selection show in table

%summon vegalite car_data

Figure 5: Here we show a simple
interactive plot tool created with
Vega-Lite [16]. The user selects
data points in the plot. As soon as
the user begins to drag their
selection out of the plot, they are
given the option by %mage to see
the same selection in a new
representation: either in a code
selection or in a spreadsheet.

Drag-Drop Between Multiple Cells
Although creating a fluid environment between code and
GUI certainly holds challenges, it also holds interesting op-
portunities. One of these is these is ability for data scien-
tists to select data in a visual form, like a table or plot, and
seamlessly retrieve that selection in code. An example of
this is shown in Figure 5. A user selects a region of data
point from a plot, and then can drag and drop their selection
into code, to perform further analysis, or into a table, to view
in the data points in detail. This drag and drop interaction
we included in our implementation for both table and plot
and is included as part of the %mage API since it concerns
transferring state between one or more tools.

Usability Study
To test the usability of these ideas, we asked data science
and machine learning practitioners from within Apple Inc.
to try out table and plot in a series of predefined data
analysis tasks on a simple census dataset [4]. Nine data
workers participated in the study, with an average age of
30 and gender split 3 female and 6 male. Prior experience
working with data ranged from a few months to 24 years.

All participants were able to complete all analysis tasks
using table and plot. However, participants reacted
differently to code being live generated as they worked.
Some participants were very enthusiastic: “[pandas] is a
very dense language, even for filters, if you don’t remember
how to write it . . . with this simple thing you’ve got the whole
power of pandas.” Another participant wanted a way to hide
the code altogether unless they needed it. In a post-task
survey all participants “Agreed” or “Strongly Agreed” on a 5-
point Likert scale to the statements “These new interactions
made me more efficient on the tasks I just did” and “It is
pleasant to use”. While eight participants also agreed with
the question “I learned to use it quickly”, one participant
who had difficulty with plot felt just “Neutral”.

Conclusions
In this work we have illustrated both an opportunity space
and the interaction challenges that come with involving GUI
work in notebooks. We believe that a future notebook that
fluidly incorporates diverse forms of data work is well worth
the continued research, both from the research and practi-
tioner communities, to achieve this dream.
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