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ABSTRACT
Knowing where people live is a fundamental component of many
decision making processes such as urban development, infectious
disease containment, evacuationplanning, riskmanagement, conser-
vationplanning, andmore.While bottom-up, surveydriven censuses
can provide a comprehensive view into the population landscape of
a country, they are expensive to realize, are infrequently performed,
and only provide population counts over broad areas. Population
disaggregation techniques and population projection methods indi-
vidually address these shortcomings, but also have shortcomings of
their own. To jointly answer the questions of “where do people live”
and “howmany people live there,” we propose a deep learningmodel
for creatinghigh-resolutionpopulation estimations fromsatellite im-
agery. Specifically,we train convolutional neural networks to predict
population in the USA at a 0.01°×0.01° resolution grid from 1-year
composite Landsat imagery. We validate these models in two ways:
quantitatively, by comparing our model’s grid cell estimates aggre-
gated at a county-level to several USCensus county-level population
projections, and qualitatively, by directly interpreting the model’s
predictions in terms of the satellite image inputs. We find that aggre-
gating our model’s estimates gives comparable results to the Census
county-level populationprojections and that thepredictionsmadeby
our model can be directly interpreted, which give it advantages over
traditionalpopulationdisaggregationmethods. Ingeneral, ourmodel
is an example of howmachine learning techniques canbe an effective
tool for extracting information from inherently unstructured, re-
motely sensed data to provide effective solutions to social problems.

CCS CONCEPTS
• Applied computing→ Cartography; • Computing method-
ologies→Machine learning; Modeling and simulation;
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1 INTRODUCTION
Many countries around the world conduct censuses to gather rich
information about their population’s size, composition, and demo-
graphics. While these censuses only happen every 5 to 10 years
depending on the country, they are highly important for govern-
ment policymakers and planners who use population projections
to gauge future demand for food, water, energy, and services. In the
United States sub-national population estimates between census
dates are used extensively. County level population estimates are
used in: “federal and state funds allocation”, “denominators for vital
rates and per capita time series”, “survey controls”, “administrative
planning and marketing guidance”, and “descriptive and analytical
studies”, according to Long, 1996 [21]. Population projections also
impact the economy and may result is large governmental spend-
ing. For example, according to the US General Accounting Office,
more than “70 federal programs distribute tens of billions of dollars
annually on the basis of population estimates”, and “[e]ven more
money was distributed indirectly on the basis of indicators which
used population estimates for denominators or controls” [21]. Unfor-
tunately, censuses in many other countries are non-representative
due to limited civil registration systems [2].

Given an administrative area, the spatial distribution of the pop-
ulation in that area can be determined by answering two questions:
“howmany people live in the area?", and “where, specifically, in the
areadopeople live?”.These twoquestions canbecast as the following
two problems: population projection, and population disaggrega-
tion. Traditionally, these questions are addressed independently of
one another using population projection methods and population
disaggregation methods, respectively. In the population projection
task, the goal is to estimate the number of people that live in a par-
ticular administrative area based on historical data. Methods such
as regression models, and non-comprehensive supplemental census
surveys (like the American Community Survey) belong to this cat-
egory. In the population disaggregation task, the goal is to distribute
a population estimate for a given administrative area within that
area, i.e., at a higher spatial resolution than the population estimate
was originally made for.

Our proposed method performs both of these tasks jointly. Using
recent techniques from deep learning, which has shown remarkable
state-of-the-art results in many computer vision tasks [19, 28], we
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train convolutional neural networks (CNNs) to directly predict the
population of a given 0.01°×0.01° area using only satellite imagery,
then summarize the predictions at different administrative area res-
olutions. These high-level predictions provide greater confidence in
the accuracy of our model’s predictions at the finer resolution. We
perform two types of model validation. Quantitatively, we compare
ourmodel’s grid cell estimates aggregated at a county level to several
US Census county level population projections. Qualitatively, we in-
terpret the model’s predictions in terms of the satellite image inputs.

2 RELATEDWORK
Deep learning is being used with increasing frequency to solve prob-
lems in the domain of computational sustainability and urban plan-
ning. Convolutional neural networks have been used to predict the
spatial distributionof poverty indeveloping countries byusingnight-
time lightsasadata rich target fora transfer learning task[17,34].Pre-
trainedCNNshave recentlybeenshowntobeeffectiveat theproblem
of remote sensing image scenes classification through the tuning a
small number of layers [16, 24]. Similarly, deep learning has been
shown to be effective in the task of classifying land cover type, with
recent work that has achieved high classification accuracy on new
large land cover datasets using mixed CNN based approaches [1, 3].

Themost similar work to ours also uses CNNs to estimate popula-
tion fromsatellite imagery [9]. Themotivation of this paper is similar
to ours, as we both attempt to create high-resolution gridded popu-
lation counts for use in planning applications. This paper estimates
population in Kenya at a 8km resolution with a CNN trained on
data from Tanzania at a 250m satellite pixel resolution. The author’s
propose a way to use their CNN’s output as a weighted surface for
populationdisaggregation, andcompare thismethod toothers fordis-
aggregating population counts in Kenya. Our work differs in several
importantways. First,we focusonvalidatingourmodel’s predictions
as raw population projections and do not consider using ourmodel’s
predictionas aweighted surface fordistributingpopulationcounts. If
the population (or projected population) of an area is known a priori,
then any population assignment method can degrade into a weight-
ing scheme. Secondly,we focus on interpreting ourmodel’s results as
away of validating its generalizability. Thirdly, we apply ourmethod
to the entire US using census block derived training and testing data.

Other related work is divided between the two problems we aim
to address jointly with our method: population projection and popu-
lation disaggregation. In the following paragraphs we address each
of these problems to give context to our methodology.

On average, county population can be reliably extrapolated over
short timehorizonswith simple linearmodels, however if somecoun-
ties experience disproportionally higher or lower growth rates,more
complicatedmodels are needed [29]. The USCensus has led research
into population and demographic projections, and uses a variety of
different population and demographic projection methods to create
sub-national projections broken down by age, sex, and race [21, 22].
Census postcensal projections, projections done in between census
years, are created with a method known as the ratio-correlation
method [21, 25, 32]. This method uses the current year’s estimated
population, number of live births, registered vehicles, public school
enrollment, registered voters, deaths, and other information to de-
termine the estimated population change at the next census date.
More recently, the American Community Survey has been used as

annual supplemental surveys to update the demographics profiles
of a variety of sub-national areas in between census years [23, 33].

Population disaggregation methods, and the creation of high res-
olution population grids have been studied for decades [7, 15]. The
most basic method in this class is areal interpolation, whereby the
knownpopulation of an administrative zone is distributed uniformly
across its area [14]. This process acts on a discretized grid over an ad-
ministrative zone,where each cell in the grid is assigned a population
value equal to the total population over the total number of cells that
cover an administrative zone. Dasymetricweighting schemes extend
this ideaof distributing theknownpopulationof anareabycreatinga
weightedsurface todistribute theknownpopulation, insteadofdoing
so uniformly. The weighting schemes are determined by combining
different spatial layers (e.g., slope, average rainfall, land/watermasks)
according to some set of rules. While some weighting schemes are
completely ad-hoc, recently, machine learning methods have been
used to improveuponthisapproach[13, 30, 31].Thesemethodologies
are similar to traditional supervisedmachine learning problems [20],
but since actual ground truth data does not exist to compare against,
validating dasymetric model results is challenging. Finally, there are
many existing gridded population datasets created using a variety of
the previously mentioned disaggregation techniques. Briefly, these
include: Gridded Population of theWorld [10], GRUMP [26], Land-
scan [4, 8], aswell as theAfriPop, AsiaPop, andAmeriPop databases.

3 METHODS
The goal of this research is to make high-resolution gridded popula-
tion estimates from satellite imagery. To do this we train CNNs that
take satellite imagery of some area as input, and output a population
estimate for that area.We train ourmodels on the continental United
States using US Census population counts and Landsat 7 1-year com-
posite imagery from the year 2000.We test ourmodels using the 2010
versions of the same datasets, and evaluate the population estimates
in two ways: (1) aggregating our model’s estimates at the county ge-
ography level, then comparing them to projected county population
counts; and (2) showingwhy our model makes predictions in terms
of input image features.

As described in Section 3.1, we letPt be a grid of target population
values covering the continental United States,Ct be a grid of target
population class values, and θ t be a grid of satellite images, where
for every target value P i, jt andCi, jt there is an associated satellite
image, θ i, jt . Using this notation, we can express our learning task as
estimating two functions: one in a regression format, f (θ i, jt )=P i, jt ,
and one in a classification format, д(θ i, jt )=Ci, jt . For the purpose of
this study we will focus on the classification version of this problem.
We use CNNs to approximate this function, as the mapping from
image to population counts will be highly non-linear, noisy, and
depend strongly on the semantic content of the input image, e.g., on
the quantity and type of buildings visible in an input image. Oncewe
have approximatedд on a training year, i.e. for t =2000, we can use it
to create population projections for a future year, in which a census
has not been taken, but satellite imagery exists for. We validate this
modelingmethodology by training CNNs using data fromC2000 and
θ2000, then running our model with all of θ2010 to create a predicted
population surface for 2010. To evaluate our predictions,we compare
our predicted population values aggregated at the county level to
other county level population predictions, we show the errors our
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Figure 1: Our deep learning model architecture, based off of the VGG-A model. The model inputs satellite images of size
(74, 74, 7) in to a linear neural network consisting of 5 convolutional blocks. Each convolutional block contains at least one
convolutional layer (conv) and a maxpooling layer. After the 5 convolutional blocks, two fully connected (fc) layers feed into
the softmax activated output of length (17) to perform classification.

modelsmakes, andwe use interpretation techniques to uncoverwhy
our models are making such predictions.

We describe the data and the preprocessing steps that we use in
Section 3.1, the CNNmodel architecture choices in Section 3.2, and
the experimental methodology that we follow to train, validate, and
test our models in Section 3.3. Note that we perform all model train-
ing, testing, and experiments using a single desktop workstation
containing an NVIDIA Titan GPU.

3.1 Data
Weuse three datasets in thiswork: theCenter for International Earth
Science Information Networks’ (CIESIN) US Census Summary Grids
for 2000 and 2010 [5, 27], Landsat 7 1-year composite images for 2000
and 2010 (courtesy of the U.S. Geological Survey)1 downloaded from
Google Earth Engine, and county level population data for 2000 and
2010 from the US Census.

TheUSCensus SummaryGrids are raster fileswith a resolution of
30 arc-seconds (≈1km)2 where the raster cell values are population
counts from their respective census. The per cell counts are created
by disaggregating census survey data from census block geogra-
phies, while taking into account various geographic features, such
as bodies of water, where people won’t be living. In general, a raster
cell will contain an area-weighted combination of the populations
from the census block shapes that it intersects with. Since census
block geographies are smaller than the 30 arc-second grid in heavily
populated areas, these maps represent the closest “ground truth”
values for population that are available to use as training data for our
machine learning models. As a pre-processing step, we re-project
these two rasters into a slightly coarser grid with a resolution of
0.01°×0.01° (≈1105m2 at the equator), where the northwest corner
is at 124.849°W ,49.3844°N .

We represent each of these grids as a matrix, Pt ∈ Z2499×5796+ ,
whereanentryP i, jt represents thepopulationof thecell in the ith row
and jth column from year t (in this case t ∈ {2000,2010}). We further
pre-process the data by creating anadditional, binnedversionof each
1Landsat: https://landsat.usgs.gov/
2We say a grid has a resolution of r meaning that the grid is made up of cells of size r×r .

population raster, where a cell takes on a value representing which
bin its population count falls in. Specifically, we create matricesCt ,
where an entryCi, jt =0 if 0≤P

i, j
t < 1, 1 if 21 ≤P

i, j
t < 22, ..., k if 2k ≤

P
i, j
t <2k+1 where k ∈N. This process discretizes the target popula-

tionvalueswhichsimplifiesour learning tasksbycreatingaclassifica-
tion problem. ForC2000 the highest class value isk=17, representing
a cell that has a population in the range [65,536,131,072). For the rest
of the study, we will use these population class values instead of the
rawpopulation count valueswhen discussing estimating population.

Landsat 7 1-year composite data is available throughGoogle Earth
Engine for the years of 1999 through 20143. The 1-year composites
are made by taking the median pixel values from a sample of the
least cloudy images from the given year. We use data from the 2000
and 2010 sets, with bands 1 through 7, at a 15m resolution. This data
is downsampled from the native resolution of 30m recorded by the
Landsat 7 satellite using nearest neighbor interpolation. As a pre-
processing step, for every 0.01°×0.01° cell in the populationmatrices,
we take the grid of Landsat imagery that it covers. We resize the grid
of Landsat imagery covered by a single population cell into a square
volume with a height and width of 74 pixels, as the number of actual
satellite imagery pixels that cover a 0.01°×0.01° area will vary with
latitude. We choose a height and width of 74, because at a latitude
of 45°N (approximately the center of the US), a 0.01°×0.01° cell is
≈1,111m2, and with a height and width of 74 pixels of 15x15 meters,
our satellite images will represent a similarly sized 1,110m2 area.We
let the grids of Landsat images be represented as θ t , where by for
every P i, jt cell from the population matrices, we have an associated
satellite image volume, θ i, jt ∈Z74×74×7+ .

The county level population data from theUSCensus includes the
ground truth population values for each county in 2000, and 2010,
the postcensal population estimates for each county in 2010, and the
ACS 5-year 2006-2010 population estimates for each county in 2010.
We use this data evaluate our models’ aggregate estimates, and refer
to the ground truth 2010 county population counts as “Actual 2010”
in Section 4.

3Google Earth Engine: https://earthengine.google.com/

https://landsat.usgs.gov/
https://earthengine.google.com/
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Figure 2: Training/validation set sampling technique. This
map shows the probability surface from which the training
and validation points are sampled from; samples from the
training set (38738 points) are shown in blue, and samples
from the testing set (3874 points) are shown in red.

3.2 Model Architecture
We experimented with different CNN architectures and hyperpa-
rameters using training and validation sets sampled from the 2000
datasets over a 1°×1° area in the southeast United States. Our as-
sumption is that a model architecture/hyperparameter set which
can performwell on this subset of the entire US will be able to per-
form equally well throughout the entire study area. The training and
validation set sampling was performed through the methodology
described in Section 3.3.

We considered the 5 well-known ‘VGG’ model architectures [28]
thatwe adapted tofit our input image sizes. Sincewehavediscretized
our target values into 17 different classes, we resize the output layer
to 17 and use a softmax activation function. For all experiments we
use a batch size of 512 samples, the Adam optimization method [18]
from the Python Keras library [6] (with default parameters), the
categorical cross entropy loss function, andwe train all networks for
30 epochs (with consideration to overfitting through observing the
training/validation loss curves).We found that aVGG-Aarchitecture
results in the best top-1 and top-3 accuracy on both the training and
validation sets over 30 training epochs and therefore use this archi-
tecture for the remainder of the study. See Figure 1 for a diagram
showing the structure of our model. We chose 30 epochs as a cut
off as the best models do not show any improvements in terms of
validation loss after this point.

3.3 Experimental Setup
Our study area consists of a 2,499 by 5,796grid covering the continen-
tal United States that contains ≈8million target values. As using all
of these samples to train with presents a significant computational
challenge, we divide up the study area into 15, 1,000 by 1,000 (1°×1°)

chunks, and train an independent model for each chunk according
to the methods described in Section 3.2. Recent work using random
forest models for population mapping suggests that, “more accurate
populationmaps canbeproducedbyusing regionally-parameterized
models where more spatially refined data exists” [13], which we fol-
low with this methodology. Within each chunk we sample 1/10th of
the available data to use as training samples, and 1/100th of the data
to use as validation samples. As there is a class imbalance problem in
thepopulationdata,withmanymoresamples in the lowerpopulation
classes than in the higher population classes, we perform aweighted
sampling to select training and validation points. We let ci represent
the number of points in class i over the entire training set, then the
probability of selecting a point Ci, jt = x is given as 1−cx /

∑17
i=1ci .

This sampling methodology serves to undersample the higher fre-
quency classes more often than the lower frequency ones, while still
resulting in a representative sample of all classes from the study area.
Figure 2 shows the results of this sampling methodology.

An important component of any machine learning or modeling
application is validating that the models are able to generalize well
to unseen data, and that the models are able to make reasonable
predictions. It is important to note that because there does not exist
any true “ground truth” gridded population data, it is not possible to
truly evaluate population disaggregation techniques. As the purpose
of our models is to predict population values from only satellite
imagery, they should (a) be able to make reasonable population pre-
dictions when compared to other population prediction techniques,
(b) be interpretable, where population predictions are able to be
explained in terms of semantic features of the input images, and
(c) should have explainable errors. We address each of these three
points in the following three paragraphs.

We first evaluate our results by comparing our model’s aggregate
population estimates at the county level with US Census Postcensal
county level estimates for 2010 (POSTCENSAL) [21], andAmerican
Community Survey 5-year estimates for 2006-2010 (ACS5YR) [33]
in terms of accuracy when evaluated against the actual 2010 Census
[5]. We convert our per grid cell population class predictions, Ĉi, j ,
into county level population estimates, P̂ i, j , in two ways. The first
method (CONVRAW), involves converting the class values directly
into population values as described in Equation 1.

P̂ i, j =

{
0 Ĉi, j =0
1
2 (2Ĉ

i, j−1+2Ĉ i, j ) otherwise
(1)

This formula is equivalent to predicting the middle point of each
class bin as the population estimate. We sum the predicted popu-
lation values for each cell whose centroid falls within a particular
county to get the aggregate county predictions. The second method,
(CONVAUG), involvesusing thevalues fromthesoftmaxactivations
in the last layer of each CNN as “features” into a secondary machine
learning model. Specifically, the last layer of our CNNmodels has
a width of 17, where the output values represent the probability that
the input image belongs to each of the 17 population classes. We
run our CNNmodels for each cell in the training dataset (covering
the entire US), and record the output vector at each location. We
aggregate the output vectors by county by summing the vectors of
all pixels that are covered by each county. This process gives us a
feature vector for each county which contains information about the
composition of the population classes of the cells that make up that
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county.We thenuse these feature vectors to train a gradient boosting
model to predict the ground truth county population values from
the training set year. We perform the same process on the test set
to create feature vectors with our trained CNNmodels and use the
trained gradient boosting model to make county level population
estimates. While this methodology is somewhat orthogonal to the
main points of this paper, it shows how our trained CNNmodels can
be used as a mechanism for feature extraction, and that the features
the model learns are indeed valid signals of population numbers.We
show the results from this county level evaluation in Section 4.1.

As described in the previous paragraph, for each input cell our
model outputs a probability distribution over the possible population
class values. Using this, we create maps that show the probability
that each cell belongs to a given class. Similarly, we show which
input images maximally activate every given output class. We show
these interpretability results in Section 4.2

Finally, we interpret the largest errors that our model makes. Be-
cause our model only uses satellite imagery data, it will become
“confused” in cases where there are signs of human settlements that
do not manifest as populated in the census datasets. This confusion
is evidence that our models are able to learn the higher-order fea-
tures of “populated areas”, however, they do not have enough data to
discriminate between different types of human activities. The results
and discussion of this are shown in Section 4.3.

4 RESULTS ANDDISCUSSION
Our results focus on validating the modeling methodology, and are
broken down into three sections: evaluating how good our model’s
population estimates are when aggregated at the county level in
Section 4.1, interpreting why our models make the predictions that
they do in 4.2, and evaluating and explaining our model’s per pixel
errors when compared with ground truth in Section 4.3.

4.1 County level Estimates
Herewecompare 4differentmethods for predicting county level pop-
ulation counts for the continental US in 2010. The four methods are
as described in Section 3.3:POSTCENSAL,ACS5YR,CONVRAW,
andCONVAUG. None of these methods contain information about
the true population counts for the target year, 2010, therefore must
infer thepopulationeither fromdetailedhistorical populationandde-
mographic data in the case of POSTCENSAL, supplemental survey
information in the case of ACS5YEAR, or a combination of satellite
and historical population data in the case of our methods CON-
VRAW and CONVAUG. We compare the predicted populations
for all counties with each method to the ground truth population
taken from the US 2010 Census and record the mean absolute error
(Mean AE), median absolute error (Median AE), r2 score, and mean
absolute percentage error (MAPE). The results for this comparison
can be found in Table 1, and the per county errors for each method
are visualized in Figure 3.

The two statistical methods used by the US Census provide more
accurate predictions of county level population for 2010, and have
lower median and mean absolute errors than our two methods. This
result is expected, as the predictions made by these methods take
many more historical features into account, while our methods only
use the previous census’ population counts and satellite imagery to
make predictions. Our model’s mean and median errors fall within

Figure 3: County level population projection results. Dif-
ference between the ground truth 2010 county population
values and the tested methods for estimating county
populations.

an order of magnitude of the census model’s errors, and our model’s
MAPE is similar to the ACS5YR results.We perform this comparison
to validate that our model’s unaided population estimates are not
wildly off, which suggests that our model is able to capture the true
signal in determining population values from satellite imagery. Con-
sidering the evaluation of howwell our model captures the locations
of populations, we argue that because our aggregate estimates at the
county level arenotwildly off, ourmodel’s individual cell predictions
must be approximately valid as well. Similar to population disaggre-
gation methodology, our model’s individual cell predictions will be
themost accurate when they are scaled tomatch the true population
value, or a trusted population estimate. While these county level
estimates should not be used in place of the more accurate census
estimation methods in the US, they could be used to create continu-
ously updated population maps for developing countries that do not
have the detailed data required to run population projection models.

4.2 Prediction Interpretability
Interpretability is an important aspect of any modeling process. As
we cover in Section 2, some population disaggregation methods
rely on ad-hoc rules to assign the population of an administrative

Mean AE Median AE r2 MAPE
CONVRAW 23,005 6,357 0.9103 73.78
CONVAUG 19,484 4,642 0.9365 49.82
POSTCENSAL 2,020 559 0.9993 3.09
ACS5YR 1,704 214 0.9996 34.44
Table 1: County level population projection results. Compar-
ison of 4 techniques for estimating 2010 county population
for all counties in the continental United States.
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Figure 4: The top 8 most confident prediction images from
the test set for each class (e.g. 99% prediction for a given
class), all of which are correctly classified. Notice the types
of images that appear from top (highways, few people) to
bottom (buildings, many people) further indicated that
our deep learning model is learning semantically-relevant
features from satellite imagery.

area to the grid cells that cover the same area. In some applications,
the methods for determining these rules, or the rules themselves,
are available, while in other products, such as Landsat [4, 8], the
methodology is not public, and therefore, subsequent years of predic-
tions are not comparable. Additionally, while some basic dasymetric
heuristics, such as “humans do not live on land where the slope is
over 45°”, can be globally applied, more detailed heuristics might be
region specific. Our methodology seeks to bypass these potential
problems as it only considers satellite imagery as input, therefore
all of the predictions made by our model will be able to be explained
in terms of the features of the input image. Similarly, because our
models generate the probability that a section of satellite imagery
belongs to each population class, we are able to show how confident
our models are about a certain classification. We show these two
components of our methodology in Figures 4 and 5 respectively.

In Figure 4 we show, for each class, the top 8 satellite image in-
puts from the testing set, that maximize the softmax output for that
class. These images give us an insight intowhat types of features our
model is learning. There are clear patterns moving from the lower
classes, which represent sparsely populated areas, to very the upper
classes which represent more urbanized areas. In the lower classes,
most of the images contain some sort of roadway or distinctively
marked fields. In classes 6 through 9 there are several buildings and
developments visible, while finally in classes 10 through 14 there
are dense suburban and urban developments with gridded patterns
visible. In Figure 5we showmaps for several of the output population
classes that show the estimated probability of each pixel belonging
to the respective class. From these we observe that our model makes
confident predictions about the 0 population class (Layer 0), and
the higher population classes. The lack of confidence in the lower
population classes (Layers 2 and 4) makes sense as we do not expect
the visual difference between 1km2 areas in which 4 and 16 people
live to be large. To compound this, census block geographies are
larger in low population rural areas, meaning that our disaggregated
“ground truth” training datawill be noisier in lower population areas.

4.3 Prediction Errors
Here we show some of the errors of our model. Through inspecting
the pixel class errors, i.e., the true population class value in 2010 (dis-
aggregated from the Census population counts) minus the predicted
population class values, we noticed that our model is systematically
over-predicting some large areas. In Figure 6 we show three of these
cases: Oak Ridge National Laboratory in Oak Ridge, TN, Anniston
ArmyDepot in Anniston, AL, andWalt DisneyWorld in Orlando, FL.
These locations all share the property of having many man-made
structures and signals of human activity, without the “ground truth”
labeling of a population count from the Census data. Walt Disney
World has many structures that look similar to those in high popu-
lation residential areas, and therefore will always be mis-classified
by a model that only relies on satellite imagery as input. In these
cases, a traditional dasymetric modeling approach to disaggregating
population will have an advantage over our model, as such an aug-
mented approach could easily incorporate layers describing army
bases, amusement parks, and other large spatial structures that will
not have populations living within their borders. Finally, these ob-
servations are further evidence that our model is generalizing and
learning useful semantic content about the input images with which
to make its prediction.

5 FUTUREWORKANDCONCLUSION
Our goal in thiswork is to train convolutional neural networks to cre-
ate high-resolution gridded population maps using only satellite im-
agery, then validate our model’s predictions both quantitatively and
qualitatively.We predict population counts in the continental US at a
0.01°×0.01° (≈1km2) resolution for 2010, after training on data from
2000. To evaluate and validate ourmodels, we first aggregate the pop-
ulation predictions at the county level, and compare them to ground
truth county population counts from the 2010 census. Our models
performwell on the task of projecting county population, with the
bestmodelhavingamedianabsoluteerrorof4,642, andalthoughthey
are not better than traditional county population projectionmethods
used by the US Census, they are able to make reasonable predictions.
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Figure5:ActivationmapsforeightdifferentpopulationclassesonthesoutheasternUnitedStates.Eachmapshowstheestimated
probability that a cell belongs in themap’s population class. Layer 0 corresponds to zero people, layers 2, 4, and 6 correspond to
fewpeople,andlayers8,10,12,and14correspondtomanypeople living intheactivatedareas.Notice thehigher the layernumber
themore dense the population becomes, which naturally highlights urban cities such as Atlanta andMiami, annotated above.

Figure 6: Three regions that have particularly high class prediction errors. Redpixels are over-predictions; blue pixels are under
predictions. Upon inspection, these three regions are large-scale human-made areas that contain features typically associated
with high-population areas, but in reality have very few people living in them. These include Oak Ridge National Lab (left,
smaller scale), Anniston Army Depot (middle, medium scale), and Walt Disney World (right, large scale). (A) shows the class
prediction errors, (B) shows the same region fromGoogleMaps, and (C) shows (A) overlaid on the satellite imagery.

Secondly, we showwhat the models have learned by creating maps
that show the estimated probability of each cell belonging to a given
class, and by visualizing the satellite image inputs for each class that
our model is most confidently classifying. We observe that the most
confident images for each class follow an expected pattern, whereby
images of rural areas with small roads and fields are classified as low
population cells, and gridded urban areas with dense housing are
classified as high population cells. Finally we qualitatively explain

some of the errors that our model is making in terms of noisy input
data; for example, our model predicts that an army base in Anniston,
Alabama is a high population area, even though the “ground truth”
census data says that the area is unpopulated.

From a technical standpoint, we plan on extending our current
methodology in several different ways. In terms of the CNN training
process, there are several changes and experiments that we would
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like to try: experimenting with different loss functions and loss func-
tion weighting schemes that could take the ordinal nature of our
classification problem into account. Currently we optimize the cat-
egorical cross entropy, which will not discriminate between “small”
and “large” errors, e.g., the loss will not penalize misclassifying a
label with true class 11, as a 10, more than it would penalize misclas-
sifying the 11 as a 1. We also would like to try training a model on
the entire US; as this task has the potential to use over 8 million sam-
ples, this will bring entirely different challenges to the deep learning
process. Lastly we would like to apply transfer learning methods to
this problem such as investigating whether pre-training models on
land-use classification tasks result in better predictions or whether
directly predicting nighttime light intensities helps.

Apart from the technical methodology, our future work need not
be limited to predicting population or limited to using gridded im-
agery inputs. In general, the technique that we develop in this paper
- a deep learning approach for estimating gridded population counts
- can be applied to any census based socioeconomic variable. Future
work could also be focused on geospatial humanities applications
such as training models to backpredict population density in his-
torical aerial photographs, or early satellite images. This could help
develop insights into how population distributions have spatially
evolved over time and could aid researchers in the humanities field
to better understand human characteristics and trends. Along the
same line, our models could be trained with arbitrary gridded inputs.
For example, our models could be trained to predict population val-
ues with existing land cover datasets as inputs, then use data from
the Historic Land Dynamics Assessment (HILDA) project[11, 12],
which provides gridded land cover datasets at a 1km2 resolution
for many countries in Europe, every 10 years from 1900 to 2000, to
create gridded historic population estimates. The same validation
methodology that we propose in this paper, of summing population
counts in larger administrative areas, then comparing to known
values, could also be used in this historic estimation setting.
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